Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2y}{4x-3y}\)=-2
\(\Rightarrow\)-2(4x-3y)=x+2y
\(\Rightarrow\)-8x+6y=x+2y
\(\Rightarrow\)6y-2y=x+8x \(\Rightarrow\)4y=9x
\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)
Ta có: \(3x=2y\Rightarrow y=\frac{3}{2}x\)\(;\)\(3x=\frac{3}{2}z\Rightarrow z=\frac{3}{\frac{3}{2}}x\Rightarrow z=2x\)
\(\Rightarrow x+y+z=x+\frac{3}{2}x+2x=4,5x=18\Rightarrow x=4\)
\(\Rightarrow y=\frac{3}{2}x=\frac{3}{2}.4=6\)\(;\)\(z=2x\Rightarrow z=2.4=8\)
(Dấu . là dấu nhân nha bạn)
Ta có :
\(3x=2y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{2x}{4}\)
ADTCDTSBN , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{2x}{4}=\frac{y-2x}{3-4}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-5\\\frac{y}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\end{cases}}}\)
Vậy \(x=-10;y=-15\)
Đặt \(x^2=a;y^2=b\left(\text{a,b }\ge0\right)\text{ ta có:}\)
\(a+b=2\)
\(\Rightarrow3a^2+5ab+2b^2+2b\)
\(=\left(3a^2+3ab\right)+\left(2ab+2b^2\right)+2b\)
\(=3a\left(a+b\right)+2b\left(a+b\right)+2b\)
\(=\left(a+b\right)\left(3a+2b\right)+2b\)
\(\text{Mà }a+b=2\text{ nên:}\)
\(=2\left(3a+2b\right)+2b\)
\(=6\left(a+b\right)=6.2=12\)
Vậy....
\(\hept{\begin{cases}3x=2y\\x+2y=16\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}\\x+2y=16\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{3}}=\frac{2y}{1}\\x+2y=16\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{3}}=\frac{2y}{1}=\frac{x+2y}{\frac{1}{3}+1}=\frac{16}{\frac{4}{3}}=12\)
=> x = 4 ; y = 6