Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+15}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+5}.\left(x-3\right)^{10}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^{x+5}.\left[1-\left(x-3\right)^{10}\right]=0\)
Trường hợp 1 :
\(\left(x-3\right)^{x+5}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^{x+5}=0^{x+5}\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Trường hợp 2 :
\(1-\left(x-3\right)^{10}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^{10}=1\)
\(\Leftrightarrow\)\(\left(x-3\right)^{10}=1^{10}\)
\(\Leftrightarrow\)\(x-3=1\)
\(\Leftrightarrow\)\(x=4\)
Vậy \(x=3\) hoặc \(x=4\)
Chúc bạn học tốt ~
a) \(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+15}=0\)
\(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+5}\cdot\left(x-3\right)^{10}=0\)
\(\left(x-3\right)^{x+5}\cdot\left[1-\left(x-3\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^{x+5}=0\\1-\left(x-3\right)^{10}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{10}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\\left(x-3\right)^{10}=\left(\pm1\right)^{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{4;2\right\}\end{cases}}\)
Vậy........
Bài 1 : Sửa đề :
Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)
Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)
=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)
=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm
Tìm nốt bài cuối nhé
ko ghi lại đề
\(\Rightarrow\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1+7y}{\left(5x-4x\right)}=-\frac{2y}{x}\)
\(\Rightarrow\frac{\left(1+5y\right)}{5}=-2y\)
Ta đc \(y=\frac{-1}{15}\)
\(\Rightarrow x=2\)
\(.a.\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-7\right)^{x+1}=0\\\left[1-\left(x-7\right)^{10}\right]=0\end{matrix}\right.\)
+ Nếu \(\left(x-7\right)^{x+1}=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=0+7\)
\(\Rightarrow x=7\)
+ Nếu \(1-\left(x-7\right)^{10}=0\)
\(\Rightarrow\left(x-7\right)^{10}=1\)
\(\Rightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)
\(\Rightarrow\left[\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=1+7\\x=-1+7\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=8\\x=6\end{matrix}\right.\)
Vậy : \(x\in\left\{6;7;8\right\}\)
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{\left(1+5y\right)-\left(1+7y\right)}{5x-4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-2y}{x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-10y}{5x}\)
\(\Rightarrow\frac{1+5y}{5x}=-\frac{10y}{5x}\)
\(\Rightarrow1+5y=-10y\)
\(\Rightarrow-15y=1\)
\(\Rightarrow y=\frac{1}{-15}\)
Tìm x,y
1+3y/12 =1+5y/5x =1+7y/4x
Giải:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1-7y}{x}=\frac{-2y}{x}\)
\(\Rightarrow x+3xy=-24y\Rightarrow x+3xy+24y=0\Rightarrow x\left(3y+1\right)+8\left(3y+1\right)=8\)
\(\Rightarrow\left(x+8\right)\left(3y+1\right)=8\)
Đến đây đơn giản rồi.Bạn tự làm nha.....................................
Ta có:1+3y/12=1+5y/5x=1+7y/4z=1+3y+1+7y/12+4x=2+10y
=> 1+5y/5x=2+10y/12+4x=>2+10y/10x=2+10y/12+4x
=>10x=12+4x
6x=12
=>x=12
bạn thấy x để tìm ý nhé