Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $25-y^2=8(x-2017)^2\geq 0$
$\Rightarrow 25\geq y^2$
$\Rightarrow 5\geq y$ (1)
Mặt khác: $25-y^2=8(x-2017)^2$ là số chẵn, do đó $y^2$ lẻ, kéo theo $y$ lẻ (2)
Từ $(1);(2)$ suy ra $y$ có thể nhận giá trị $y=1; 3;5$
Với $y=1$ thì $8(x-2017)^2=25-1^2=24$
$\Rightarrow (x-2017)^2=3$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=3$ thì $8(x-2017)^2=25-3^2=16$
$\Rightarrow (x-2017)^2=2$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=5$ thì $8(x-2017)^2=25-y^2=0$
$\Rightarrow (x-2017)^2=0\Rightarrow x=2017$
Vậy $(x,y)=(2017, 5)$
y<=5
y phải lẻ
với y=5=> x=2017
với y=3=> 16=8.(x-1017)^2 loại k có x nguyen
y=5; x=2017 duy nhất......
ta có
25-y2=8(x-2009)2
ta thấy:25-y^2 lơn hơn hoạc = 0
và 8(x-2009)^2 chia hết cho 2 suy ra vế phải chẵn
do đó y^2 lẻ(hiệu 2so là số chãn)
do vậy chỉ có những giá trị sau tồn tại
y^2=1,y^2=9,y^2=25
y^2=1;(x-2009)^2=3 (loại)
y^2=9;(x-2009)^2=2(loại)
y^2=25;(x-2009)^2=0;x=2009
vậy..............
\(\frac{x}{4}=\frac{25}{x}\)
\(\Rightarrow x^2=100\)
\(x^2=\left(\pm10\right)^2\)
\(x=\pm10\)
\(\frac{y2}{3}=\frac{12}{1}\)
\(y2=36\)
\(y=36:2\)
\(y=18\)
chúc bạn học tốt
Do 25 - y^2 lớn hơn hoăc bằng 0 nên y bé hơn hoăc bằng 5
- Với y =5 suy ra 8(x - 2017)^2 = 0 suy ra x- 2017=0 nên x =2017
- Với y =4 suy ra 8(x-2017)^2 =9 ( loại )
-Với y =3 suy ra 8(x-2017)^2 =16 suy ra (x-2017)^2 =2 (loại)
-Với y=2 suy ra 8(x-2017)^2 =21 ( loại)
-Với y=1 suy ra 8(x-2017)^2 =24 suy ra (x -2017) ^2 =3 ( loại)
-Với y=0 suy ra 8(x-2017)^2 =25. (loại)
Vậy (x;y) = (2017;5)