K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

a) 2x + 124 = 5y

Ta thấy : 5y luôn lẻ (\(\forall\)y) => 2x + 124 cũng là số lẽ

Mà 124 là số chẵn => 2x là số lẽ => x = 0

Với x = 0 => 20 + 124 = 5y

=> 1 + 124 = 5y

=> 125 = 5y

=> 5y = 53

=> y = 3

Vậy x = 0; y = 3 thõa mãn

b) Ta có: 10x + 168 = y2

=> 10x = y2 - 168

+) Nếu y là số lẻ => y2  là số lẻ

                               => y2 - 168 lẻ

                      => 10x lẻ => x = 0

Với x = 0 => 100 + 168 = y2

=> 1 + 168 = y2 => 169 = y2

                       => y2 = 132

                   => \(\orbr{\begin{cases}y=13\\y=-13\end{cases}}\)

+) Nếu y chẵn => y2 chẵn 

                   => y2 - 168 chẵn

              => 10x chẵn

Do 10x \(⋮\) 10 => y2 - 168 \(⋮\)10

   Mà y2 là số chính phương (ko có tận cùng là 8)

=> y2 - 168 ko \(⋮\) 10 

=> pt vô nghiệm

Vậy x = 0 và y = 13 hoặc x - 0 và y = -13 thõa mãn

1 tháng 7 2019

Xét đề bài là tìm x y là số tự nhiên

a) \(2^x+124=5^y\)

+) Với x=0

ta có:

 \(2^0+124=5^y\)

\(5^y=125=5^3\)

y=3

+) Với x>0 => y>3

Ta có: \(2^x+124⋮2\)

và \(5^y\) không chia hết cho 2

=> phương trình vô nghiệm

Vậy x=0; y=3

b) \(10^x+168=y^2\)

+) Với x=0 thay vào ta có:

\(y^2=169=13^2\Rightarrow y=13\)

+) Với x>0 => y>13

\(10^x+168=y^2\)

Ta có VT chia 10 dư 8

VP là số chính phương chia 10 không thể dư 8 được

=> phương trình vô nghiệm

Vậy x=0 và y=13 thỏa mãn

26 tháng 12 2022

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

26 tháng 12 2022

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

17 tháng 1 2019

|x| - 7 = 11

<=> |x| = 18

<=> x = 18

hoặc x = -18

Vậy...

27 tháng 12 2023

A, Ta có : 2xy + x + y = 7

=> 2(2xy + x + y) = 2 . 7

=> 4xy + 2x + 2y = 14

=> (4xy + 2x) + 2y + 1 = 14 + 1

=> 2x(2y + 1) + (2y + 1) = 15

=> (2x + 1)(2y + 1) = 15

=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}

Vậy ta có bảng : 

2x + 1-15-1-3-515135
2y + 1-1-15-5-311553
x-8-1-2-37012
y-1-8-3-20721

=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)

\(3xy+2x-5y=6\)

\(\Leftrightarrow9xy+6x-15y=18\)

\(\Leftrightarrow\left(9xy+6x\right)-\left(15y+10\right)=8\)

\(\Leftrightarrow3x.\left(3y+2\right)-5\left(3y+2\right)=8\)

\(\Leftrightarrow\left(3x-5\right)\left(3y+2\right)=8\)

Do x,y nguyên nên ta có bảng sau

3x - 518-1-842-4-2
3y + 281-8-124-2-4
x\(\frac{13}{3}\)( loại )\(\frac{4}{3}\)( loại )-13\(\frac{7}{3}\)( loại )\(\frac{1}{3}\)( loại )
y2\(-\frac{1}{3}\)( loại )\(-\frac{10}{3}\)( loại )-1 0

\(\frac{2}{3}\)( loại )

\(-\frac{4}{3}\)( loại )-2 

Bạn tự KL nhé

16 tháng 5

⇔9𝑥𝑦+6𝑥−15𝑦=18

⇔(9𝑥𝑦+6𝑥)−(15𝑦+10)=8

⇔3𝑥.(3𝑦+2)−5(3𝑦+2)=8

⇔(3𝑥−5)(3𝑦+2)=8

20 tháng 2 2023

loading...  

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Đề không đủ. Bạn coi lại.

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
$xy^2+2x-y^2=8$

$(xy^2-y^2)+(2x-2)=6$

$y^2(x-1)+2(x-1)=6$

$(y^2+2)(x-1)=6$

Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau: