Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được :
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
- GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.
Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
- GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được :
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
- GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.
Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)
<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương
=> \(x^2+1=1\)
và \(y^3+1=2\)
Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Bài 1:
\(x^2-8x+y^2+6y+25=0\)
\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)
Vậy...
Bài 2:
Phương trình có nghiệm duy nhất là x = -2/3 nên ta có:
\(\left(4+a\right).\frac{-2}{3}=a-2\)
\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)
\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)
\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)
\(\Leftrightarrow\)\(a=-\frac{2}{5}\)
Bài 3:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)
\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)
\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)
\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)
\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)
Bài 4:
\(xy-3x+2y=13\)
\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)
\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)
x+2 | -7 | -1 | 1 | 7 |
y-3 | -1 | -7 | 7 | 1 |
x | -9 | -3 | -1 | 5 |
y | 2 | -4 | 10 | 4 |
Vậy...
Bài 5:
\(xy-x-3y=2\)
\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)
x-3 | -5 | -1 | 1 | 5 |
y-1 | -1 | -5 | 5 | 1 |
x | -2 | 2 | 4 | 8 |
y | 0 | -4 | 6 | 2 |
Vậy....
Để (x-3)(y+4) >0 thì :
*TH1 :
x-3 >0 => x >3
y+4 >0 => y>-4
*TH2 :
x-3 <0 => x<3
y+4 <0 => y<-4
Vậy ...
thank