Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x , y , z ,t biết
x/y = 2/5 và x . y = 40
Ta có: \(\dfrac{x}{y}=\dfrac{2}{5}=>\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\) => x=5k, y=2k
Ta có : x . y = 5k . 2k = 40
=> 10k = 40 => k = 4
=> k = 2 hoặc -2
=> x = 5k = 5 . 2 =10
y = 2k =2 . 2 =4
hay x = 5k = 5. (-2) = -10
y = 2k = 2 . (-2) = -4
Vậy x = 10, y = 4 hoặc x = -10, y = -4
Ta có: \(x-4009=y.\)
\(\Rightarrow x-y=4009\)
\(\Rightarrow\frac{x-1}{2005}=\frac{3-y}{2006}\) và \(x-y=4009.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{\left(x-y\right)-\left(1-3\right)}{4011}=\frac{4009+2}{4011}=1.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006\\\frac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2006;-2003\right).\)
Chúc bạn học tốt!
|x-1| + |4-x| = 3
Áp dụng bất đẳng thức ta có:
|x-1| + |4-x | \(\ge\)|x-1+ 4-x| = 3
Dấu = xảy ra khi và chỉ khi : (x-1)(4-x) \(\ge\)0
\(\Rightarrow\) 1\(\le\)x \(\le\)4
Vậy 1\(\le\)x \(\le\)4 là giá trị cần tìm
Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)
=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)
=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)
=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)
Từ (1);(2) và (3) => đpcm
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=k\)
=>\(x=yk;y=kz;z=kt\)
Ta có: \(\left(\dfrac{x+y+z}{y+z+t}\right)^3\)
\(=\left(\dfrac{yk+kz+kt}{y+z+t}\right)^3=\left(\dfrac{k\left(y+z+t\right)}{y+z+t}\right)^3=k^3\left(1\right)\)
Ta có: \(\dfrac{x}{t}=\dfrac{yk}{t}=\dfrac{k^2z}{t}=\dfrac{k^3t}{t}=k^3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)
Vậy \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)
Cho mk 1 like nhé ^_^