Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,x/7=y/3 va x-24=y
=>x/7=y/3 va x-y=24
adtcdts=n:
x/7=y/3=x-y/7-3=24/4=6
Suy ra :x/7=6=>x=6.742
y/3=6=>y=3.6=18
2,Adtcdts=n:
x/5=y/7=z/2=y-x/7-5=48/2=24
suy ra : x/5=24=>x=120
y/7=24=>y=168
z/2=24=>z=48
Ta có : x - 24 = y
=> x - y = 24
Lại có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
( theo tính chất của dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{7}=6\) => x = 42
\(\dfrac{y}{3}=6\) => y = 18
Vậy x = 42, y = 18
Ta có :\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-x}{7-5}=\dfrac{48}{2}=24\)
( theo tính chất dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{5}=24\) => x = 120
\(\dfrac{y}{7}=24\) => y = 168
\(\dfrac{z}{2}=24\) => z = 48
Vậy x = 120, y = 168, z = 48
a, Ta có:
\(x-24=y\\ x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)
+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)
Vậy \(x=42;y=18\)
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)
+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)
+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)
+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)
Vậy \(x=48;y=67,2;z=19,2\)
a: \(\Leftrightarrow-15x+10=-7x+14\)
=>-8x=4
hay x=-1/2
\(a,\dfrac{2-3x}{x-2}=-\dfrac{7}{5}\left(x\ne2\right)\\ \Leftrightarrow14-7x=10-15x\\ \Leftrightarrow8x=-4\Leftrightarrow x=-2\left(tm\right)\\ c,\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{5}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{2\cdot2+5\cdot3-4}=\dfrac{45}{15}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=6\\y-2=15\\z-3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=17\\z=15\end{matrix}\right.\\ d,\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{6x+7y+8z}{24+84+120}=\dfrac{456}{228}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\\z=30\end{matrix}\right.\)
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
a) x-1/2005=3-y/2006
áp dụng tc dãy ts = nhau ta có :
x-1/2005=3-y/2006=(x-1)+(3-y)/2005+2006=x-1+3-y/4011=x-y-1+3/4001=4009-1+3/4011=4011/4011=1
=>x-1/2005=1=>x-1=2005=>x=2006
=>3-y/2006=1=>3-y=2006=>y=-2003
vậy...
c)
3x=y
=>x/1=y/3
=>x/4=y/12
5y=4z
=>y/4=z/5
=>y/12=z/15
=>x/4=y/12=z/15
=>6x/24=7y/84=8z/120
áp dụng tc dãy ts = nhau ta có :
6x/24=7y/84=8z/120 = 6x+7y+8z/24+84+120=456/228=2
=>x/4=2=>x=8
=>y/12=2=>y=24
=>z/15=2=>z=30
vậy ...
a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)