K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)

\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)

\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)

Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:

\(x+y+z=49\)

\(\Rightarrow30k+16k+15k=49\)

\(\Rightarrow61k=49\)

\(\Rightarrow k=\dfrac{49}{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)

QT
Quoc Tran Anh Le
Giáo viên
18 tháng 7 2018

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)

=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)

=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)

Vậy x = 3, y = 4, z = 5

Đặt x/3=y/4=z/5=k

=>x=3k; y=4k; z=5k

Ta có: \(2x^2+y^2-z^2=9\)

\(\Leftrightarrow18k^2+16k^2-25k^2=9\)

\(\Leftrightarrow9k^2=9\)

\(\Leftrightarrow k^2=1\)

TH1: k=1

=>x=3; y=4; z=5

TH2: k=-1

=>x=-3; y=-4; z=-5

\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)

\(\Leftrightarrow28x=105y=50z\)

hay x/75=y/20=z/42

Đặt x/75=y/20=z/42=k

=>x=75k; y=20k; z=42k

Ta có: xyz=504000

\(\Leftrightarrow k^3\cdot63000=504000\)

\(\Leftrightarrow k=2\)

=>x=150; y=40; z=84

17 tháng 7 2018

\(2x=3y=4z\)

\(\Leftrightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

\(\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Đặt :

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=4k\\z=3k\end{matrix}\right.\)

\(2x^2-3z^2=1125\Leftrightarrow2.\left(6k\right)^2-3.\left(3k\right)^2=1125\Leftrightarrow72k^2-27k^2=1125\)

\(\Leftrightarrow45k^2=1125\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)

Với \(k=5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.5=30\\y=4.5=20\\z=3.5=15\end{matrix}\right.\)

Với \(k=-5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.\left(-5\right)=-30\\y=4.\left(-5\right)=-20\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

Vậy ...

5x/2=7z/3

nên 15x=14z

=>x/14=z/15

3x=5y nên x/5=y/3

=>x/70=y/42=z/45

Đặt x/70=y/42=z/45=k

=>x=70k; y=42k; z=45k

Tacó: xz=47250

=>3150k2=47250

=>k2=15

TH1: \(k=\sqrt{15}\)

\(x=70\sqrt{15};y=42\sqrt{15};z=45\sqrt{15}\)

TH2: 

 \(k=-\sqrt{15}\)

\(x=-70\sqrt{15};y=-42\sqrt{15};z=-45\sqrt{15}\)

26 tháng 6 2017

Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)

\(\Leftrightarrow7x-21=5x+25\)

\(\Leftrightarrow7x-5x=21+25\)

\(\Leftrightarrow2x=46\)

\(\Rightarrow x=46:2=23\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)

\(\Leftrightarrow x^2-1=63\)

\(\Leftrightarrow x^2=64\)

\(\Rightarrow x^2=\left(\pm8\right)^2\)

\(\Rightarrow x=8\) hoặc \(x=-8\)

26 tháng 6 2017

2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)

\(7x-21=5x+25\)

\(7x-5x+25=21\)

\(2x+25=21\)

\(2x=-4\Rightarrow x=-2\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(7.9=\left(x+1\right)\left(x-1\right)\)

\(63=x\left(x-1\right)+1\left(x-1\right)\)

\(63=x^2-x+x-1\)

\(x^2=63+1=64\)

\(x=\left\{\pm8\right\}\)

c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)

\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)

\(x\left(x+4\right)+4\left(x+4\right)=40\)

\(x^2+4x+4x+16=40\)

\(x^2+8x=40-16=24\)

\(x\left(x+8\right)=24\)

\(x\in\left\{\varnothing\right\}\)

d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)

\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)

\(x^2-2x+2x-4=x^2+3x-x-3\)

\(\)\(x^2-4=x^2+2x-3\)

\(\Leftrightarrow x^2-x^2-2x+3=4\)

\(-2x+3=4\)

\(-2x=1\)

\(x=-\dfrac{1}{2}\)

28 tháng 6 2021

`y=2/3x`

`=>3y=2x`

`=>8x=12y`

Mặt khác:`4z=3y`

`=>z=3/4y`

`=>5z=15/4y`

Thay `8x=12y,5z=15/4y` vào `8x+9y+5z=1980`

`=>15/4y+9y+12y=1980`

`=>21y+15/4y=1980`

`=>99/4y=1980`

`=>1/4y=20`

`=>y=80`

`=>x=3/2y=120,z=3/4y=60`

Vậy `(x,y,z)=(120,80,60)`

Ta có: 4z=3y

nên \(4z=3\cdot\dfrac{2}{3}x=x\)

hay \(z=\dfrac{1}{4}x\)

Ta có: 8x+9y+5z=1980

\(\Leftrightarrow8x+9\cdot\dfrac{2}{3}x+5\cdot\dfrac{1}{4}x=1980\)

\(\Leftrightarrow x\cdot\dfrac{61}{4}=1980\)

hay \(x=\dfrac{7920}{61}\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}x=\dfrac{2}{3}\cdot\dfrac{7920}{61}=\dfrac{5280}{61}\\4z=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\4z=\dfrac{15840}{61}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\z=\dfrac{3960}{61}\end{matrix}\right.\)

Vậy: \(\left(x,y,z\right)=\left(\dfrac{7920}{61};\dfrac{5280}{61};\dfrac{3960}{61}\right)\)

5 tháng 8 2017

áp dụng t/c dãy tỉ số bằng nhau

5 tháng 8 2017

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)

\(\Rightarrow x=8\)

\(\Rightarrow y=6\)

\(\Rightarrow z=18\)

b. c. Xem lại đề.