Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Ta có : \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
Nên : \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Ta có : \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
Nên : \(x=6.20=120\)
\(y=6.24=144\)
\(z=6.21=126\)
Vậy .................................
Ta có : \(\frac{x}{5}=\frac{y}{6}=\frac{x}{5.4}=\frac{y}{6.4}=\frac{x}{20}=\frac{y}{24}\left(1\right)\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{8.3}=\frac{z}{7.3}=\frac{y}{24}=\frac{z}{21}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
\(\Rightarrow\frac{x}{20}=6\Rightarrow x=120\)
\(\frac{y}{24}=6\Rightarrow y=144\)
\(\frac{z}{21}=6\Rightarrow z=126\)
Vậy x = 120 ; y = 144 ; z = 126
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
Tìm cac số x;y;z biết rằng:\(\frac{x-y}{10}=\frac{y+x}{5};\frac{x+y}{7}=\frac{y-z}{8}\) và x-2y+z=36
Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{35}=\frac{y}{42}\)
\(\frac{y}{7}=\frac{z}{8}\) => \(\frac{y}{42}=\frac{z}{48}\)
=> \(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}=\frac{x+y+z}{35+42+48}=\frac{250}{125}=2\)
=> \(\hept{\begin{cases}\frac{x}{35}=2\\\frac{y}{42}=2\\\frac{z}{48}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.35=70\\y=2.42=84\\z=2.48=96\end{cases}}\)
vậy ...
Ta có:
\(\frac{3}{8}x=\frac{4}{5}y=\frac{8}{7}z\)
\(\Leftrightarrow\frac{3x}{8}=\frac{4y}{5}=\frac{8z}{7}\)
\(\Leftrightarrow\frac{x}{\frac{8}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{8}}\)
Áp dụng tính chất dã tỉ số bằng nhau ta được:
\(\frac{x}{\frac{8}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{8}}=\frac{x+y-z}{\frac{8}{3}+\frac{5}{4}-\frac{7}{8}}=\frac{73}{\frac{73}{24}}=24\)
\(\Rightarrow\hept{\begin{cases}x=24.\frac{8}{3}=64\\y=24.\frac{5}{4}=30\\z=24.\frac{7}{8}=21\end{cases}}\)
Vậy .......
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
=> \(\hept{\begin{cases}x=6.20=120\\y=6.24=144\\z=6.21=126\end{cases}}\)
Ta có :
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\) (1)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\) (2)
Từ (1) và (2) => \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=6\\\frac{y}{24}=6\\\frac{z}{21}=6\end{cases}}\Rightarrow\hept{\begin{cases}x=120\\y=144\\z=126\end{cases}}\)