K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

\(2x-1\left(x+2\right)-3\left(x+2\right)=0\)

\(\Rightarrow\left(2x-4\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

(2x-1)(x+2)-3(x+2)=0

<=>2x2+3x-2-3x-6=0

<=>2x2-8=0

<=>2(x2-4)=0

<=>x2-4=0

<=>(x+2)(x-2)=0

=>\(\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)

Vậy...

\(M=x^2-2xy+4y^2+12xy+22\)

\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)

\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\) 

( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt ) 

20 tháng 11 2021

\(\left(2x-5\right)\left(2x+5\right)-\left(2x+1\right)^2=4x^2-25-4x^2-4x-1=-4x-25=\left(-4\right).\left(-2005\right)-26=8020-26=7994\)

\(\Leftrightarrow4\left(x^2+x-2\right)-\left(4x^2+11x-3\right)=2x-2\)

\(\Leftrightarrow4x^2+4x-8-4x^2-11x+3=2x-2\)

=>-7x-5=2x-2

=>-9x=3

hay x=-1/3

5 tháng 11 2018

\(f\left(1\right)=\left(1^2-1-1\right)^{100}+\left(1^2+1-1\right)^{100}-2=\left(-1\right)^{100}+1^{100}-2=1+1-2=0\)

\(\Rightarrow f\left(x\right)⋮\left(x-1\right)\)(1)

\(f\left(-1\right)=\left[\left(-1\right)^2-\left(-1\right)-1\right]^{100}+\left[\left(-1\right)^2+\left(-1\right)-1\right]^{100}-2\)

              \(=1^{100}+\left(-1\right)^{100}-2=1+1-2=0\)

\(\Rightarrow f\left(x\right)⋮\left(x+1\right)\)(2)

Mà x - 1 và x + 1 không có nhân tử chung khác 1 (3)

Từ (1), (2) và (3) \(\Rightarrow f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)

5 tháng 11 2018

Bạn ơi 1 và -1 lấy ở đâu vậy 

16 tháng 4 2017

tk ủng hộ nha mọi người

16 tháng 4 2017

x = 4

Tk mình nha!!!>.<

14 tháng 7 2016

bài này 1h rùi,chắc chờ tui ngủ dậy làm;

= (x+y)3 - (x+y) + xy(x+y) =

= (x+y)((x+y)2 -1 +xy)) = (x+y)(x2 +3xy +y2 -1)

23 tháng 8 2021

1) \(x-y=3\\ \Rightarrow\left(x-y\right)^2=3^2\\ \Rightarrow x^2-2xy+y^2=9\\ \Rightarrow\left(x^2+y^2\right)-2xy=9\\ \Rightarrow x^2+y^2=9+2xy\)

    \(\Rightarrow x^2+y^2=9-4\)(vì xy=-2)

    \(\Rightarrow x^2+y^2=5\)

 

23 tháng 8 2021

2) \(x-y=3\\ \Rightarrow\left(x-y\right)^3=27\\ \Rightarrow x^3-3x^2y+3xy^2-y^3=27\\ \Rightarrow\left(x^3-y^3\right)+6x-6y=27\\ \Rightarrow\left(x^3-y^3\right)+6\left(x-y\right)=27\\ \Rightarrow\left(x^3-y^3\right)+18=27\\ \Rightarrow x^3-y^3=9\)

26 tháng 5 2018

Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!

\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)

\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2\left(x-1\right)< 0\)

\(\Leftrightarrow x< 1\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)

26 tháng 5 2018

\(ĐKXĐ:x\ne1;x\ne3\)

để \(A< 1\)  thì  \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)    

\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)

\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)

\(\Leftrightarrow\frac{2}{x-3}< 0\)

\(\Rightarrow x-3< 0\)  vì \(2>0\)

\(\Rightarrow x< 3\)

kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có  \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\)   thì \(A< 1\)