Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)
\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)
\(\Leftrightarrow9x^2=16\)
\(\Leftrightarrow x^2=\dfrac{16}{9}\)
hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)
Lời giải:
a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$
$\Leftrightarrow -4x.6=8$
$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$
b.
$9x^5-72x^2=0$
$\Leftrightarrow 9x^2(x^3-8)=0$
$\Leftrightarrow x^2=0$ hoặc $x^3=8$
$\Leftrightarrow x=0$ hoặc $x=2$
c.
$5x^4-8x^2-4=0$
$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$
$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$
$\Leftrightarrow (5x^2+2)(x^2-2)=0$
$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)
$\Leftrightarrow x=\pm \sqrt{2}$
d.
PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$
$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$
$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x+1=0$
$\Leftrightarrow x=-2$ hoặc $x=-1$
a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)
\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)
\(\Leftrightarrow-24x=8\)
hay \(x=-\dfrac{1}{3}\)
b: Ta có: \(9x^5-72x^2=0\)
\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
Bài 2:
x^3+6x^2+12x+m chia hết cho x+2
=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2
=>m-8=0
=>m=8
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)