Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)
=>\(\left|2x+1\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: (2x-3)2=36
=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
d: \(7^{x+2}+2\cdot7^x=357\)
=>\(7^x\cdot49+7^x\cdot2=357\)
=>\(7^x=7\)
=>x=1
a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
\(---\)
b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)
\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)
\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
\(---\)
c) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(---\)
d) \(7^{x+2}+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)
\(\Rightarrow7^x\cdot\left(49+2\right)=357\)
\(\Rightarrow7^x\cdot51=357\)
\(\Rightarrow7^x=357:51\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)
a) \(\Leftrightarrow\left[{}\begin{matrix}x-3,5=7,5\\x-3,5=-7,5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-4\end{matrix}\right.\)
b) \(\Leftrightarrow\left|x+\dfrac{4}{5}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{2}\\x+\dfrac{4}{5}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{10}\\x=-\dfrac{13}{10}\end{matrix}\right.\)
c) \(\Leftrightarrow\left|x-0,4\right|=3,6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)
d) \(\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\4,5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=4,5\end{matrix}\right.\)(vô lý)
Vậy \(S=\varnothing\)
a)
\(\left|x-2\right|-\dfrac{3}{5}=\dfrac{1}{2}\\ \left|x-2\right|=\dfrac{1}{2}+\dfrac{3}{5}\\ \left|x-2\right|=\dfrac{11}{10}\\ =>\left[{}\begin{matrix}x-2=\dfrac{11}{10}\\x-2=-\dfrac{11}{10}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{31}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{7}{3}\right):\dfrac{-1}{3}=0,4\\ x-\dfrac{7}{3}=0,4\cdot\dfrac{-1}{3}\\ x-\dfrac{7}{3}=-\dfrac{2}{15}\\ x=-\dfrac{2}{15}+\dfrac{7}{3}\\ x=\dfrac{11}{5}\)
c)
\(\left|x-3\right|=5\\ =>\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\left[{}\begin{matrix}x=5+3\\x=-5+3\end{matrix}\right.\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
d)
\(\left(2x+3\right)^2=25\\ =>\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
e)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\\ x=-\dfrac{5}{7}\)
f)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\\ =>x-\dfrac{1}{2}=\dfrac{1}{3}\\ x=\dfrac{1}{3}+\dfrac{1}{2}\\ x=\dfrac{5}{6}\)
\(a,\left(x.\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x.\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\\ ---\\ b,\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{5}=\left(\dfrac{2}{\sqrt{5}}\right)^2=\left(-\dfrac{2}{\sqrt{5}}\right)^2 \\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\\x+\dfrac{1}{2}=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\\x=-\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\end{matrix}\right.\\ Vậy:x=\pm\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\)
\(c,\left|3x-\dfrac{4}{5}\right|=\dfrac{11}{5}\\ \Rightarrow\left[{}\begin{matrix}3x-\dfrac{4}{5}=\dfrac{11}{5}\\3x-\dfrac{4}{5}=-\dfrac{11}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=\dfrac{11}{5}+\dfrac{4}{5}=3\\3x=-\dfrac{11}{5}+\dfrac{4}{5}=-\dfrac{7}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{3}=1\\x=-\dfrac{7}{5}:3=-\dfrac{7}{15}\end{matrix}\right.\\ ---\\ d,\left|2x-2\right|=0\\ \Leftrightarrow2x-2=0\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\)
|x-1|+|x-2|+|x-4|=3(1)
TH1: x<1
Phương trình (1) sẽ trở thành:
1-x+2-x+4-x=3
=>7-3x=3
=>3x=4
=>\(x=\dfrac{4}{3}\left(loại\right)\)
TH2: 1<=x<2
Phương trình (1) sẽ trở thành:
x-1+2-x+4-x=3
=>-x+5=3
=>-x=-2
=>x=2(loại)
TH3: 2<=x<4
Phương trình (1) sẽ trở thành:
x-1+x-2+4-x=3
=>x+1=3
=>x=2(nhận)
TH4: x>=4
Phương trình (1) sẽ trở thành:
x-1+x-2+x-4=3
=>3x-7=3
=>3x=10
=>\(x=\dfrac{10}{3}\left(loại\right)\)
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
a/ x/27 = -2/3.6
<=>x . 3,6 = -2 . 27
<=>3,6x = -54
<=>x = -54 : 3.6
<=> x = - 15
b/ /x/+1/2 = 3/4
<=>/x/ = 3/4 - 1/2
<=>/x/ =1/4
=> x=1/4 hoặc x= -1/4 (vì giá trị tuyệt đối của mọi số đều nhận giá trị dương)