Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x2 - 6x = -9
<=> x2 - 6x + 9 = 0
<=> (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
b. 2(x + 3) - x2 + 3x = 0
<=> 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a, <=> x2 -2x +1 + 5x -x2 =8
<=> 3x +1 =8
<=> 3x = 7
<=> x= 7/3
b, thiếu đề
c, <=> 2x3 -1 + 2x(4 -x2) = 7
<=> 2x3 + 8x -23 = 8
<=> 8x =8
<=> x=1
b)(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49
(=) x3- 6x2 +12 x -8 - ( x3 - 27 ) + 6( x2 + 2x +1)
(=) x3 - 6x2 +12x -8 - x3 +27 + 6x2 +12x +6
(=) 24x + 25 = 49
(=) 24x = 49 - 25 = 24
(=) x = 24/24 =1
a: Ta có: \(4x\left(x-7\right)-4x^2=56\)
\(\Leftrightarrow4x^2-7x-4x^2=56\)
hay x=-8
b: Ta có: \(12x\left(3x-2\right)-\left(4-6x\right)=0\)
\(\Leftrightarrow36x^2-24x-4+6x=0\)
\(\Leftrightarrow36x^2-18x-4=0\)
\(\text{Δ}=\left(-18\right)^2-4\cdot36\cdot\left(-4\right)=900\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{18-30}{72}=\dfrac{-1}{6}\\x_2=\dfrac{18+30}{72}=\dfrac{2}{3}\end{matrix}\right.\)
c: Ta có: \(4\left(x-5\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=9\end{matrix}\right.\)
a) x3 - 3x2 + 3x - 1 = 0
<=>(x-1)3=0
<=>x-1=0
<=>x=1
b) x3+6x2 + 12x+8 =0
<=>(x+2)3=0
<=>x+2=0
<=>x=-2
c) (x-2)3+6(x+1)2-x3+9=0
<=>x3-6x2+12x-8+6x2+12x+6-x3+9=0
<=>24x+7=0
<=>24x=-7
<=>x=-7/24
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
\(a,\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\\ \Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\\ \Leftrightarrow2\left(x-3\right)=0\\ \Leftrightarrow x=3\)
\(b,4x^2-9=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,x^2+6x+9=0\\ \Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)
a. \(\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\)
\(\Leftrightarrow2\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(a,x^3+3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)
\(\Leftrightarrow x=0\) Vì \(x^2+3x+3>0\forall x\)
\(b,x^3-3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2-3x+3\right)=0\)
\(\Leftrightarrow x=0\)
\(c,\) bạn làm tương tự nha
c, x^3 + 6x^2 + 12x = 0
=> x(x^2 + 6x + 12) = 0
=> x(x^2 + 6x + 9 + 3) = 0
=> x[(x + 3)^2 + 3) = 0
=> x = 0 hoặc (x + 3)^2 + 3 = 0
=> x = 0 hoặc (x + 3)^2 = -3 (loại vì (x+3)^2 > 0)
vậy x = 0
a, x^3 + 3x^2 + 3x = 0
=> x(x^2 + 3x + 3) = 0
=>x(x^2 + 3x + 2,25 + 0,75) = 0
=> x[(x + 1,5)^2 + 0,75)] = 0
=> x = 0 hoặc (x + 1,5)^2 + 0,75 = 0
=> x = 0 hoặc (x + 1,5)^2 = -0,75 (loại)
vậy x = 0
b, x^3 - 3x^2 + 3x = 0
=> x(x^2 - 3x + 3) = 0
=> x(x^2 - 3x + 2,25 + 0,75) = 0
=> x[(x - 1,5)^2 + 0,75] = 0
=> x = 0 hoặc (x-1,5)^2 + 0,75 = 0
=> x = 0 hoặc (x - 1,5)^2 = -0,75 (loại)
vậy x = 0