K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

a) 1/5.8+1/8.11+1/11.14+......+1/x.(x+3)=101/1540

1/3.3.[1/5.8+1/8,11+1/11.14+......+1/x.(x+3)=101/1540

1/3.[3/5.8+3/8.11+3/11.14+........+3/x.(x+3)]=101/1540

1/3.[1/5-1/8+1/8-1/11+1/11-1/14+....+1/x-1/x+3=101/1540

1/3.[1/5-1/x+3]=101/1540

1/5-1/x+3=101/1540.3

1/5-1/x+3=303/1540

1/x+3=1/3-303/1540=1/308

=>x+3=308    =>x=305

              Vậy x=305

25 tháng 3 2016

1/3.3(1/5.8+1/8.11+1/11.14+.....1/x(x+1)_101/1540

1/3.(1/5-1/8+1/8-1/11+1/11-1/14+....1/x+1/x+3)=101/1540

1/3.(1/5-1/x+3)=101/1540

1/5-1/x+3=101/1540/1/3=303/1540

1/x+3=1/5-303/1540=1/308

x+3+308

x=305

16 tháng 8 2018

305 bạn nhé

16 tháng 8 2018

phần a là 05 nha phần b mk ko bít

7 tháng 3 2017

dơn giản như đan rổ

25 tháng 2 2019

a)Ta có   \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)\(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=)   \(x+3=305\)=) \(x=302\)

13 tháng 3 2016

còn chi tiết đây

a)1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
1/(5.8)+1/(8.11)+1/(11.14)+...1/x.(… =101/1540
3/(5.8)+3/(8.11)+...+3/x(x+3)=3.(10…
1/5-1/8+1/8-1/11+...+1/x-1/(x+3)=30…
1/5-1/(x+3)=303/1540
1/(x+3)=1/5-303/1540=1/308
=>x=305

13 tháng 3 2016

lời giải nè : ấn vô dòng đen đen ở dưới ấy nhé

Tìm x, biết:a) 1/5.8 + 1/8.11 + 1/11.14 + ... + 1/x.(x+3)= 101/1540b) 1+ 1/3 + 1/6 + 1/10 +...+ 1/x.(x+1):2 = $1\frac{1991}{1993}$119911993

10 tháng 4 2017

a)

<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305

b)

Ôn tập toán 6

10 tháng 4 2017

a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)

\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

308.1 = (x + 3).1

308 = x + 3

x = 308 - 3

x = 305