Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a) 461 + (x - 45) = 387
x - 45 = 387 - 461
x - 45 = -74
x = -74 + 45
x = -29
b) 2x - 8 = x + 4
2x - x = 8 + 4
x = 12
c) 11 - (-53 + x)= 97
-53 + x = 11 - 97
-53 + x = -86
x = -86 - (-53)
x = -33
d) 2.|x - 5| - 16 = 0
2.|x - 5| = 0 + 16
2.|x - 5| = 16
x - 5 = 16 : 2
x - 5 = 8
x = 8 + 5
x = 13
e) |x| - 8 = 4
x = 4 + 8
x = 12
A 461+(x-45)=387
X-45 =387-461
x-45 = -74
x= -74 + 45
x =-29
B 2x-8 = x+4
(2x-x)= 4-(-8)
x = 12
C 11-(-53+x) =97
-53+x =11-97
-53+x= -86
x= -86 - (-53)
x= -33
a)
\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng:
x+1 | 1 | -1 | 5 | -5 |
y-2 | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 7 | -3 | 3 | 1 |
Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)
b)
\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng:
x-5 | 1 | -1 | 7 | -7 |
y+4 | -7 | 7 | -1 | 1 |
x | 6 | 4 | 12 | -2 |
y | -11 | 3 | -5 | -3 |
Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)
461 + (x - 45) = 387
x - 45 = 387 - 461
x - 45 = -74
x = -74 + 45
x = -29
11 - (-53 + x) = 97
-53 + x = 11 - 97
-53 + x = -86
x = -86 - -53
x = -33
- (x+84) + 213 = -16
x - 84 + 213 = -16
x - 84 = -16 - 213
x - 84 = -229
x = -229 + 84
x = -145
461 + ( x - 45 ) = 387
x - 45 = 387 - 461
x - 45 = - 74
x = - 74 + 45
x = - 29
Vậy x = - 29
a,461+(x-45)=387
=>x-45=387-461
=>x-45=-74
=>x=-74+45
x=-29
a,461+(x-45)=387
x-45=387-461
x-45=-74
x=-74+45=-29
b,11-(-53+x)=97
-53+x=11-97
53+x=-86
x=-86-53=-139
c,x=2 hoặc x=5
e,x=1
ai ma tra loi chtt se bi tru 50 diem