Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\)
\(\frac{1}{4x}=\frac{3}{8}\)
=>x=2/3
hc tốt
\(\Rightarrow2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2x-2\right).2x}\right)=\frac{1}{8}.2\).2
\(\Rightarrow\frac{2}{2.4}+\frac{2}{4.6}+...\frac{2}{\left(2x-2\right).2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\Rightarrow\frac{1}{2x}=\frac{1}{2.2}\)
\(\Rightarrow x=2\)
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)
Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)
\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)
Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)
\(\Leftrightarrow8x-8=4\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)
Vậy không có x thỏa mãn yêu cầu đề bài
Bài 1:
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right).x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4.}.\left(1-\frac{1}{x}\right)=\frac{11}{48}\)
\(1-\frac{1}{x}=\frac{11}{48}:\frac{1}{4}\)
\(1-\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{x}=1-\frac{11}{12}\)
\(\frac{1}{x}=\frac{1}{12}\)
Vậy x= 12
Bài 2 :
Xét vế trái ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{1}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
VẾ TRÁI ĐÚNG BẰNG VẾ PHẢI .ĐẲNG THỨC ĐÃ CHỨNG TỎ LÀ ĐÚNG
cHÚC BẠN HỌC TỐT ( -_- )
\(a,\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left[2x-2\right]\cdot2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left[2x-2\right]\cdot2x}\right]=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right]=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}\)
\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2
Mun ảnh đại diện cute
<3
À tk mk nhé. giờ mk tk bn trước
Gọi biều thức trên là A, ta có:
A=(1/2.4+1/4.6+1/6.8+1/8.10+1/10.12)x=2
2A=(2/2.4+2/4.6+2/6.8+2/8.10+2/10.12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/12)x=2
2A=5/12x=2
=>A=5/24x=1
=>x=1:5/24=24/5
=>1/2.(5/12).x=1
5/24.x=1
x=1:5/24
x=24/5
lưu ý, 1/2.5/12 là tính xong phần 1/2.4 +...+1/10.12 rùi nhé
bạn tk mình một lần cho mình biết đi mình chưa được ai tk lần nào
a) \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)
B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)
BÀI 2:
A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)
\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)
\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)
\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)
ngoặc 1 có 99 số hạng x
\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3.\frac{99}{100}=1\)
\(\Leftrightarrow99x=1+\frac{3.99}{100}\)
\(\Leftrightarrow99x=\frac{397}{100}\)
\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)
=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)
=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
=>\(\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
=>\(\frac{1}{2x}=\frac{1}{4}\)
=> \(2x=4\)
=> \(x=2\)