Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x = 16 e) 12x = 144
2x = 24 12x = 122
=> x = 4 => x = 2
b) 2x+1 = 16 các câu còn lại tương tự nhé nhiều quá
2x+1 = 24
x + 1 = 4
=> x = 3
c) 5x+1 = 125
5x+1 = 53
x + 1 = 3
=> x = 2
d) 52x - 1 = 125
52x-1 = 53
2x - 1 = 3
2x = 4
=> x = 2
a)Ta có : 2x = 16
2x = 24
=> x = 4
b) Ta có: 2x+1 = 16
2x+1 = 24
=> x+1 = 4
=> x = 4-1
=> x = 3
Mấy câu sau tương tự vậy đó để hôm khác mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá hihi ! ^-^
Học tốt nha bạn !
a, 273 : 35 = ( 33)3 : 35 = 39 : 35 = 34
b, 72 . 343 . 4930 = 72. 73.(72)3 = 711
c, 625 : 53 = 54 : 53 = 5
d, 1 000 000 : 103 = 106 . 103 = 103
e, 115 : 121= 115 : 112 = 113
f, 87 : 64 :8 = 87 : 82 : 81 = 84
i, 1024 . 16 : 26 = 210 . 23 : 26 = 27
a) \(11^n=1331\)
\(\Rightarrow11^n=11^3\)
\(\Rightarrow n=3\)
b) \(n^3=125\)
\(\Rightarrow n^3=5^3\)
\(\Rightarrow n=5\)
c) \(5^4=n\)
\(\Rightarrow625=n\)
\(\Rightarrow n=625\)
d) \(\left(n+1^2\right)=9\)
\(\Rightarrow n+1=9\)
\(\Rightarrow n=9-1\)
\(\Rightarrow n=8\)
a) 11^n = 1331
⇒ 11^n = 11^3
⇔ n = 3
b) n^ 3 = 125
⇒ n^3 = 5^3
⇔ n = 5
c) 5^4 = n
⇒ n = 625
d) ( n + 1^2 ) = 9
⇒ ( n + 1 ) = 9
⇒ n = 8
Bài 1:
a) \(8^5\cdot8^2=8^7\)
b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)
c) \(2^7\cdot5^7=10^7\)
d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)
Bài 2:
a) \(x^6:x^3=125\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
b) \(x^{20}=x\)
\(\Rightarrow x^{20}-x=0\)
\(\Rightarrow x\left(x^{19}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)
c) \(3^x\cdot3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow x=4\)
d) \(2x-138=2^3\cdot3^2\)
\(\Rightarrow2x-138=72\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
Giải:
Bài 1:
a) \(8^5.8^2=8^{5+2}=8^7\)
b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)
c) \(2^7.5^7=\left(2.5\right)^7=10^7\)
d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)
Bài 2:
a) \(x^6:x^3=x^{6-3}=x^3=125\)
\(\Leftrightarrow x=5\)
b) \(x^{20}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
c) \(3^x.3=243\)
\(\Leftrightarrow3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
d) \(2.x-138=2^3.3^2\)
\(\Leftrightarrow2.x-138=8.9\)
\(\Leftrightarrow2.x-138=72\)
\(\Leftrightarrow2.x=72+138\)
\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)
Chúc bạn học tốt!
Bài 1.
a) \(12^3.3^3=\left(12.3\right)^3=36^3.\)
b) \(2^5.8^4=2^5.\left(2^3\right)^4=2^5.2^{12}=2^{17}.\)
c) \(3^8.9^0.27^2=3^8.1.\left(3^3\right)^2=3^8.3^6=3^{14}.\)
d) \(2^4.5^4=\left(2.5\right)^4=10^4.\)
e) \(2^4.4^3=2^4.\left(2^2\right)^3=2^4.2^6=2^{10}.\)
Bài 2.
a) \(5^x=259\)
Vì 5 khi nâng lên luỹ thừa bậc mấy thì chữ số tận cùng của kết quả luôn bằng 5.
Mà 259 có tận cùng là 9
\(\Rightarrow5^x=259\) (vô lý)
\(\Rightarrow\) Phương trình vô nghiệm.
b) \(\left(7x-11\right)^3=2^5.5^2+260\)
\(\Leftrightarrow\left(7x-11\right)^3=800+260\)
\(\Leftrightarrow\left(7x-11\right)^3=1060\)
\(\Leftrightarrow7x-11=\sqrt[3]{1060}\)
\(\Leftrightarrow7x=\sqrt[3]{1060}+11\)
\(\Leftrightarrow x=\dfrac{\sqrt[3]{1060}+11}{7}\).
Giải:
a) \(4^n:4=64\)
\(\Leftrightarrow4^{n-1}=64\)
\(\Leftrightarrow4^{n-1}=4^3\)
Vì \(4=4\)
Nên \(n-1=3\)
\(\Leftrightarrow n=4\)
b) \(7^5:7^n=49\)
\(\Leftrightarrow7^{5-n}=49\)
\(\Leftrightarrow7^{5-n}=7^2\)
Vì \(7=7\)
Nên \(5-n=2\)
\(\Leftrightarrow n=3\)
c) \(3^n=27\)
\(\Leftrightarrow3^n=3^3\)
Vì \(3=3\)
Nên \(n=3\)
d) \(11^n=121\)
\(\Leftrightarrow11^n=11^2\)
Vì \(11=11\)
Nên \(n=2\)
e) \(5.5^n=125\)
\(\Leftrightarrow5^{1+n}=125\)
\(\Leftrightarrow5^{1+n}=5^3\)
Vì \(5=5\)
Nên \(1+n=3\)
\(\Leftrightarrow n=2\)
g) \(4^n=64:4\)
\(\Leftrightarrow4^n=16\)
\(\Leftrightarrow4^n=4^2\)
Vì \(4=4\)
Nên \(n=2\)
Chúc bạn học tốt!
a) \(4^n\div4=64\)
\(\Rightarrow4^n=64\div4\)
\(\Rightarrow4^n=16\)
\(\Rightarrow4^n=4^2\)
\(\Rightarrow\) n = 2
b) \(7^5\div7^n=49\)
\(\Rightarrow7^5\div7^n=7^2\)
\(\Rightarrow7^n=7^5\div7^2\)
\(\Rightarrow7^n=7^3\)
\(\Rightarrow\) n = 3
c) \(3^n=27\)
\(\Rightarrow3^n=3^3\)
\(\Rightarrow\) n = 3
d) \(11^n=121\)
\(\Rightarrow11^n=11^2\)
\(\Rightarrow\) n = 2
e) \(5\times5^n=125\)
\(\Rightarrow5^n=125\div5\)
\(\Rightarrow5^n=25\)
\(\Rightarrow5^n=5^2\)
\(\Rightarrow\) n = 2
g) \(4^n=64\div4\)
\(\Rightarrow4^n=16\)
\(\Rightarrow4^n=4^2\)
\(\Rightarrow\) n = 2