Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+..........+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+.............+\dfrac{2}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2016}\)
\(\Leftrightarrow x+1=2016\)
\(\Leftrightarrow x=2015\left(tm\right)\)
Vậy ...........
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(A=2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2014}{2016}\)
\(A=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{x+1}=\dfrac{1}{2016}\)\(\Leftrightarrow x+1=2016\Leftrightarrow x=2015\)
Bạn ơi thiếu đề rồi, cái biểu thức này không tính được đâu , mình nghĩ thế
a)\(\dfrac{3}{10}\)-x=\(\dfrac{25}{30}\)-\(\dfrac{4}{30}\)
\(\dfrac{3}{10}-x=\dfrac{7}{10}\)
x = \(\dfrac{3}{10}-\dfrac{7}{10}\)
x=\(\dfrac{-4}{10}\)
b)\(\dfrac{-5}{8}+x=\dfrac{4}{9}-\dfrac{63}{9}\)
\(\dfrac{-5}{9}+x=\dfrac{-59}{9}\)
\(x=\dfrac{-59}{9}-\dfrac{-5}{9}\)
\(x=\dfrac{-64}{9}\)
c)=>2.18=(x-3).(x-3)
=>36=(x-3)\(^2\)
=>6\(^2\)=(x-3)\(^2\)
6= x-3
x=6+3=9
a) Vì \(\dfrac{x+5}{3}\)= \(\dfrac{x-6}{7}\) nên 7(x+5) = 3(x-6)
=> 7x+ 35 = 3x - 18
7x - 3x = -18 -35
4x = -53
x = -53:4
x = \(\dfrac{-53}{4}\)
Cho \(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{1}{7}.\dfrac{1}{2}+\dfrac{15}{8}}{a+\dfrac{5}{6}-\left(\dfrac{-1}{3}\right)}\)
a) Rút gọn A?
b) Tính A khi a=75%
c) Tìm a để A=50%
d) Tìm a thuộc Z để A là số nguyên.
e) Với a = bao nhiêu để A có giá trị bằng với giá trị của biểu thức:
\(B=\dfrac{\dfrac{2}{3}.\dfrac{15}{6}+\left(-0,5\right)^3}{\dfrac{1}{9}.6^2-5\dfrac{1}{3}}\)
Giải
a, Ta có:
\(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{3}{7}.\dfrac{1}{6}+\dfrac{1}{8}.15}{a+\dfrac{5}{6}+\dfrac{1}{3}}\)
\(A=\dfrac{\dfrac{3}{7}.\left(\dfrac{-5}{8}+\dfrac{3}{4}+\dfrac{1}{6}\right)+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{3}{7}.\dfrac{7}{24}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}.\left(15+1\right)}{a+\dfrac{7}{6}}\)
\(A=\dfrac{2}{a+\dfrac{7}{6}}\)
b, Thay \(a=75\%\) vào \(A\), ta được:
\(A=\dfrac{2}{75\%+\dfrac{7}{6}}\)
\(A=\dfrac{2}{\dfrac{3}{4}+\dfrac{7}{6}}\)
\(\Rightarrow A=\dfrac{23}{12}\)
c, Ta có: \(\dfrac{2}{a+\dfrac{7}{6}}=50\%\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{1}{2}\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{2}{4}\)
\(\Rightarrow a+\dfrac{7}{6}=4\)
\(\Rightarrow a=\dfrac{17}{6}\)
d, Để \(A\in Z\Rightarrow2⋮a+\dfrac{7}{6}\)
\(\Rightarrow a+\dfrac{7}{6}\in\left\{\pm1;\pm2\right\}\)
\(\circledast,a+\dfrac{7}{6}=1\Rightarrow a=\dfrac{-1}{6}\)
\(\circledast,a+\dfrac{7}{6}=-1\Rightarrow a=\dfrac{-13}{6}\)
\(\circledast,a+\dfrac{7}{6}=2+\Rightarrow a=\dfrac{5}{6}\)
\(\circledast,a+\dfrac{7}{6}=-2\Rightarrow a=\dfrac{-19}{6}\)
\(a\in\varnothing\) khi \(A\in Z\)
e, Ta có:
\(B=\dfrac{5}{3}+\dfrac{-1}{8}\Rightarrow B=\dfrac{37}{24}\)
\(\Rightarrow\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{37}{24}\)
\(a+\dfrac{7}{6}=\dfrac{37}{24}.2\)
\(a+\dfrac{7}{6}=\dfrac{37}{12}\)
\(\Rightarrow a=\dfrac{23}{12}\)
Chúc bạn học thiệt giỏi nha!!!
\(=\dfrac{2}{2}\).(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))
=2.(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))
=2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\))
=2.[(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\))
=2.[\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)]
2.[(\(\dfrac{1}{3}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{4}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x}\))+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]
=2.[0+0+...+0+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]
=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))
=2.(\(\dfrac{1.x+1-1.2}{2.x+1}\))
=2.(\(\dfrac{x+1-2}{2x}\))=2.\(\dfrac{x-1}{2x}\)=\(\dfrac{2.\left(x-1\right)}{2x}\)=\(\dfrac{2x-2}{2x}\)
\(\dfrac{2x-2}{2x}\)=\(\dfrac{2014}{2016}\)\(\Rightarrow\)(2x-2).2016=2014.2x=4032x-4032=4028x
\(\Rightarrow\)4032x-4028x=4x=4032\(\Rightarrow\)x=4032:4=1008
Đặt A=\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x+1\right)}\)
\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}\)
\(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x.\left(x+1\right)}\)