Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
\(x\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x=0\) hay \(x+3=0\) hay \(x^2+1=0\) (pt vô nghiệm vì \(x^2+1\ge1\))
\(\Leftrightarrow x=0\) hay \(x=-3\)
-Vậy \(S= \left\{0;-3\right\}\)
Câu 1. thiếu đề đó bạn ạ
Câu 2:
Ta có: x^3+15x^2+74x+120
=(x^3+4x^2) + (11x^2+44x) + (30x+120)
=(x+4)(x^2+11x+30)
=(x+4)(x+5)(x+6)
Ta có bảng xét dấu
x | -6 | -5 | -4 | ||||
x+4 | - | | | - | | | - | | | + |
x+5 | - | | | - | | | + | | | + |
x+6 | - | | | + | | | + | | | + |
Để (x+4)(x+5)(x+6)<0
Khi có chỉ 1 số âm hoặc cả 3 số âm
<=> x<-6 hoặc -5<x<-4
\(B=-4x^2+12x-11\\ =-\left(\left(2x\right)^2-12x+11\right)\\ =-\left(\left(2x\right)^2-2.2x.3+9+2\right)\\ =-\left(2x-3\right)^2-2< 0\)
(vì \(\left(2x-3\right)^2\ge0\forall x\Rightarrow-\left(2x-3\right)^2\le0\forall x\Rightarrow-\left(2x-3\right)^2-2< 0\))
C=-2x^2+2x-5
=-2(x^2-x+5/2)
=-2(x^2-x+1/4+9/4)
=-2(x-1/2)^2-9/2<=-9/2<0 với mọi x
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^2-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x\left(x-2\right)=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0;2\right\}\)
\(x^5+x^4+x+1=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
bạn giải thích ngắn gọn quá