K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

4 tháng 9 2021

https://olm.vn/hoi-dap/detail/233628753470.html

2 tháng 10 2016

\(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và \(x+y+z=40\)

Áp dụng tc dãy tỉ:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)

\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{40}{31}\\\frac{y}{10}=\frac{40}{31}\\\frac{z}{6}=\frac{40}{31}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)

 

2 tháng 10 2016

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

Áp dụng tính chất dãy tỉ số = nhau

*\(\frac{x}{2}=4=>x=8\)

*\(\frac{y}{3}=4=>y=12\)

*\(\frac{z}{5}=4=>z=20\)

vậy:\(x=8;y=12;z=20\)

2 tháng 10 2016

Ta có :

\(2x=3y=5z\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)

\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)

2 tháng 10 2016

\(2x=3y=5z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

  • \(\frac{x}{2}=4\Rightarrow x=8\)
  • \(\frac{y}{3}=4\Rightarrow y=12\)
  • \(\frac{z}{5}=4\Rightarrow z=20\)

Vậy: \(\left(x,y,z\right)=\left(8,12,20\right)\)

22 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6}=\frac{0}{6}=0\)

\(\Rightarrow2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2};\)

\(3y-2=0\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)

Vậy  \(x=-\frac{1}{2};y=\frac{2}{3}\)

23 tháng 10 2019

Áp dụng tc cua dtsbn ta có

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(1\right)\)

\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)

Thay vào 1 ta có:\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow\frac{3y-2}{7}=1\)

\(\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)

Vậy.....

3 tháng 9 2016

2x=3y=5z=>\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

\(\Rightarrow\begin{cases}x=\left(-3\right).15=-45\\y=\left(-3\right).10=-30\\z=\left(-3\right).6=-18\end{cases}\)

Vậy ...

3 tháng 9 2016

\(2x=3y=5z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=-\frac{33}{4}=-8,25\)

\(\Rightarrow\frac{x}{2}=-8,25\Rightarrow x=-16,5\)

\(\Rightarrow\frac{y}{3}=-8,25\Rightarrow y=-24,75\)

\(\frac{z}{5}=-8,25\Rightarrow z=-41,25\)

30 tháng 12 2015

hỏi bài để lên Violympic giải toán chứ gì?

câu này quá dễ đối với mình ở Trường Đại Học 

 nếu tick mình sẽ chỉ

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)