K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

\(2xy-3x+y=2\)

\(\Leftrightarrow x\left(2y-3\right)+\frac{1}{2}\left(2y-3\right)=\frac{4}{3}\)

\(\Leftrightarrow6x\left(2y-3\right)+3\left(2y-3\right)=8\)

\(\Leftrightarrow\left(2y-3\right)\left(6x+3\right)=8\)

Lập bảng xét ước là xong bạn nhé !

29 tháng 6 2020

2xy-3x+y=2

<=> 4xy-6x+2y=4

<=> 2y(2x+1)-3(2x+1)=1

<=> (2x+1)(2y-1)=1

\(\Rightarrow2x+1;2y-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

TH1: \(\hept{\begin{cases}2x+1=-1\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-2\\2y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=0\end{cases}}}\)

TH2: \(\hept{\begin{cases}2x+1=1\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=0\\2y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=1\end{cases}}}\)

Vậy có 2 cặp (x,y) thỏa mãn yêu cầu đề bài (-1;0);(0;1)

NV
20 tháng 1

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)

b.

\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{10}{-2}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=5.\left(-5\right)=-25\end{matrix}\right.\)

c.

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{-2y}{-4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.4=20\\y=2.4=8\end{matrix}\right.\)

d.

\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x}{9}=\dfrac{-y}{-16}=\dfrac{3x-y}{9-16}=\dfrac{35}{-7}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=16.\left(-5\right)=-80\end{matrix}\right.\)

26 tháng 12 2021
Giúp mik vs ạ
21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

17 tháng 9 2021

bn ơi gõ laxte nha bn , khó hiểu quá!

Bài 1: 

a: Ta có: 5x=4y+2x

\(\Leftrightarrow3x=4y\)

\(\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)

Do đó: x=-32; y=-24

Bài 1: 

a: Ta có: 5x=4y+2x

\(\Leftrightarrow3x=4y\)

hay \(\dfrac{x}{4}=\dfrac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)

Do đó: x=-32; y=-24