Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì GTTĐ luôn lớn hơn hoặc bằng 0
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|\ge0\forall x\)
\(\Leftrightarrow10x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
Từ đây ta có :
\(x+1+x+2+...+x+9=10x\)
\(9x+45=10x\)
\(10x-9x=45\)
\(x=45\)
Vậy x = 45
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
\(a,Taco:\)
\(\left(x-1\right)^2,\left(y-3\right)^8\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-3\right)^8=0\Leftrightarrow\hept{\begin{cases}x-1=0\Leftrightarrow x=1\\y-3=0\Leftrightarrow y=3\end{cases}}\)
\(b,Taco:\)
\(|x-2018|+\left(y-2019\right)^{2018}\ge0\)
\(\Rightarrow|x-2018|+\left(y-2019\right)^{2018}=0\Leftrightarrow\hept{\begin{cases}x-2018=0\Leftrightarrow x=2018\\y-2019=0\Leftrightarrow y=2019\end{cases}}\)
\(a,\left(x-1\right)^2+\left(y-3\right)^8=0\)
Vì \(\left(x-1\right)^2\ge0vs\forall x;\left(y-3\right)^8\ge0vs\forall y\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^8=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Vậy x = 1, y = 3