Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài thiếu điều kiện x, y thuộc Z
Do x, y nguyên => x - 2 và 2y + 3 là ước nguyên của 26
=> 2y + 3 là ước nguyên lẻ của 26
=> 2y + 3 thuộc {1 ; -1 ; 13 ; -13}
+ Với 2y + 3 = 1 => 2y = 1 - 3 = -2 => y = -2 : 2 = -1
=> x - 2 = 26 => x = 26 + 2 = 28
+ Với 2y + 3 = -1 => 2y = -1 - 3 = -4 => y = -4 : 2 = -2
=> x - 2 = -26 => x = -26 + 2 = -24
+ Với 2y + 3 = 13 => 2y = 13 - 3 = 10 => y = 10 : 2 = 5
=> x - 2 = 2 => x = 2 + 2 = 4
+ Với 2y + 3 = -13 => 2y = -13 - 3 = -16 => y = -16 : 2 = -8
=> x - 2 = -2 => y = -2 + 2 = 0
Vậy x = 28; y = -1 hoặc x = -24; y = -2 hoặc x = 4; y = 5 hoặc x = 0; y = -8
\(\left(x-2\right)\left(2y+3\right)=26\)
\(\Leftrightarrow x-2\inƯ\left(26\right);2y+3\inƯ\left(26\right)\) \(=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)
Vì \(\left(2y+3\right):2\) dư 1 nên \(2y+3=\pm1;\pm13\)
Lại có \(x-2;2y+3\inℕ\) nên \(2y+3=13\)
Khi \(2y+3=13\) ; \(x-2=2\)
\(\Rightarrow y=5;x=4\)
Vậy cặp ( x;y) thỏa mãn đề bài là : \(x=4;y=5\)
Lời giải:
Với $x,y$ nguyên thì $x-2, 2y+3$ nguyên. Mà $(x-2)(2y+3)=26$, $2y+3$ lẻ với mọi $y$ nguyên nên ta xét các TH sau:
TH1: $2y+3=1, x-2=26\Rightarrow y=-1; x=28$
TH2: $2y+3=-1, x-2=-26\Rightarrow y=-2; x=-24$
TH3: $2y+3=13, x-2=2\Rightarrow y=5, x=4$
TH4: $2y+3=-13, x-2=-2\Rightarrow y=-8; x=0$
Ta có (x+3)(2y+1)= 2X13 từ đó ta có x+3 = 2 còn 2y+1 = 13 vậy x= -2 và y = 6
Hoặc (x+3) = 13 còn 2y+1= 2 ( y= 1/2 không thỏa mãn rồi) vậy chỉ có thể x=-2, y= 6 thôi bạn nhá
a,Do \(x;y\inℤ=>\hept{\begin{cases}x-3\inℤ\\2y+1\inℤ\end{cases}}\)
Mà \(\left(x-3\right)\left(2y+1\right)=7\)nên ta có bảng sau :
lập bảng với các ước của 7 nhé
b, Do \(x;y\inℤ=>\hept{\begin{cases}2x+1\inℤ\\3y-2\inℤ\end{cases}}\)
Mà \(\left(2x+1\right)\left(3y-2\right)=-55\)nên ta có bảng sau :
tương tự a , chắc bạn viết nhầm x thành y
(x.2).(2y+3)=26
2x(2y+3)=26
x(2y+3)=13
TH1<=>x=1;2y+3=13
<=>x=1; y=5
TH2 <=> x=13 ;2y+3=1
x=13 ; y= -1
P/s tham khảo nha
theo bài ra ta có
\(\left(x+1\right)+2\left(\frac{3x}{2}+2\right)+3\left(2x+3\right)=26\)
\(\Leftrightarrow x+1+3x+4+6x+9=26\)
\(\Leftrightarrow10x+14=26\)
\(\Leftrightarrow10x=12\)
\(\Leftrightarrow x=\frac{12}{10}\)\(\Rightarrow y=\frac{9}{5}\)\(\Rightarrow z=\frac{12}{5}\)
+)Theo bài:2x=z;3x=2y(1)
+)Theo bài ta lại có:(x+1)+2.(y+2)+3.(z+3)=26
=>x+1+2y+4+3z+9=26
=>x+2y+3z+1+4+9=26
=>x+2y+3z+14=26
=>x+2y+3z =26-14
=>x+2y+3z =12(2)
+)Thay (1) vào (2) được:x+3x+6x=12
=>(1+3+6)x=12
=>10x =12
=>x =\(\frac{12}{10}=\frac{6}{5}\)
Vậy x=\(\frac{6}{5}\)
Chúc bn học tốt
`x,y in NN`
`=>x-2,2y+3 in NN`
`=>x-2,2y+3 in Ư(26)={+-1,+-2,+-13,+-26}`
Vì `2y+3` là số lẻ
`=>2y+3 in {+-1,+-13}` đã loại được 4 trường hợp :D
2y+3 | 1 | -1 | 13 | -13 |
x-2 | 26 | -26 | 2 | -2 |
y | -1 | -2 | 5 | -8 |
x | 28 | -24 | 4 | 0 |
KL | loại | loại | TM | loại |
(x-2)(2y+3)=26=1.26=26.1=13.2=2.13
2y+3 luon le va >=3
(x-2)(2y+3)=2.13
2y+3=13=>y=5
x-2=2=>x=4
ds: x,y=(4,5)