Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)
Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)
Ta có
\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)
=> \(x,y\in\varnothing\)
|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )
=> x + 8/5 = 2,2 - 2y = 0
=> x = -8/5; 2y = 2,2
=> x = -8/5; y = 1,1
\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)
Vậy x = -1,6; y = 1,1
Ủng hộ mk nha ^_-
Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)
a) |-x + 2| = -|y + 9|
=> |-x + 2| + |y + 9| = 0
Ta có: |-x + 2| \(\ge\)0 \(\forall\)x
|y + 9| \(\ge\)0 \(\forall\)y
=> |-x + 2| + |y + 9| \(\ge\)0 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)
Vậy ...
b) |3x + 4| + |2y - 10| \(\le\)0
Ta có: |3x + 4| \(\ge\)0 \(\forall\)x
|2y - 10| \(\ge\)0 \(\forall\)y
=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)
vậy ...
c) |-x - 3| + |y + 7| < 0
Ta có: |-x - 3| \(\ge\)0 \(\forall\)x
|y + 7| \(\ge\)0 \(\forall\)y
=> |-x - 3| + |y + 7| \(\ge\)0 \(\forall\)x; y
=> ko có giá trị x, y thõa mãn đb
TH1:Nếu |x-1/2|+|x-y|=0
thì x-1/2=0
=>x=0+1/2=1/2
*)Nếu x=1/2 thì 1/2-y=0 hay y=1/2-0=1/2
còn th2 thì để mk nghĩ đã nha
a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\)
\(\Leftrightarrow x=3;y=2x;2z=-y+x\)
Ta có : y = 2x => y = 2 . 3 = 6
và 2z = -y + x => 2z = -6 + 3 = -3 => z = \(-\frac{3}{2}\)
b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)
\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)
\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)
Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)
và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)