Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x-2}.3^{y-3}.5^{z-1}=144=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(\hept{\begin{cases}2^{x-2}=2^4\\3^{y-3}=3^2\\5^{z-1}=5^0\end{cases}}=>\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}}=>\hept{\begin{cases}x=4+2\\y=2+3\\z=0+1\end{cases}}=>\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
vậy \(\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
Tách số 144 ra ta có :
\(144=2^4.3^2.1=2^4.3^2.5^0\)
Theo đề bài
\(\Rightarrow\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x+y+z}{4+5+6}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\) mà x + y + z = 45
\(\Rightarrow\frac{45}{15}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow3=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot4=12\\y=3\cdot6=18\\z=3\cdot5=15\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}=\frac{2x-y-z}{4-\left(-5\right)-3}=-\frac{45}{6}=-\frac{15}{2}\)
\(x=-\frac{15}{2}\cdot2=-15\)
\(y=-\frac{15}{2}\cdot\left(-5\right)=\frac{75}{2}\)
\(z=-\frac{15}{2}\cdot3=-\frac{45}{2}\)
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0
Vì ( x - 3 )2 ≥ 0 với ∀x
( y - 4 )2 ≥ 0 với ∀y
( x2 - xz )2020 ≥ 0 với ∀x; ∀z
⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0
Dấu " = " xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)
Vậy x = 3; y = 4; z = 3
x-2xy+y-3=0
x-2xy+y-2-1=0
x(2-y)-2-y-1=0 (quy tắc đổi dấu)
(2-y)(x-1)-1=0
(2-y)(x-1)=1
khi tích hai số =1 thì cả hai số phải cugf dương hoặc cùng âm (đều bằng -1 hoặc 1)
Th1 cùng dương
2-y=1
y=1
x-1=1
x=2
TH2 cùng âm
2-y=-1
y=3
x-1=-1
x=0
3x+2.5y=9x.5x
3x+2.5y=32x.5x
x=y=2