Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y
<=> 1+z+xy >= x+y+z
<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)
tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)
cộng theo vế của (1), (2), (3) ta được
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)
dấu "=" xảy ra khi x=y=z=1
Câu đầu em xem lại đề bài sao có hai dấu bằng.
Câu 2:
\(\dfrac{3}{2}\) \(\times\)y - \(\dfrac{3}{4}\) \(\times\)y + y = \(\dfrac{4}{5}\)
y \(\times\) ( \(\dfrac{3}{2}\) - \(\dfrac{3}{4}\) + 1) = \(\dfrac{4}{5}\)
y \(\times\) (\(\dfrac{6}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{4}{4}\)) = \(\dfrac{4}{5}\)
y \(\times\) \(\dfrac{7}{4}\) = \(\dfrac{4}{5}\)
y = \(\dfrac{4}{5}\): \(\dfrac{7}{4}\)
y = \(\dfrac{16}{35}\)
x,y . x,y =xy,xy
xy : 10 x xyx :10 = xyxy : 100
xy : 10 x xyx = xyxy :100 x 10
xy : 10 x xyx = xyxy :10
xy x xyx = xyxy :10 x 10
xy x xyx = xyxy
xyx = xyxy : xy
xyx = 101
=> x=1, y=0
4786569890-------------------88888 777 66666698-0=0k;,. \dưqdc'qac
szX s sđfvừgeggggêgfggggWWQEWR
b) xy + x - y = 4
<=> ( xy + x ) - ( y + 1 ) = 3
<=> x(y + 1 ) - ( y + 1 ) = 3
<=> ( y + 1 ) ( x - 1 ) = 3
Theo bài ra cần tìm các số nguyên dương x,y => Xét các trường hợp y + 1 nguyên dương và x - 1 nguyên dương
Mà 3 = 1 x 3 => Chỉ cs thể xảy ra 2 th :
* TH1 : y + 1 = 1 ; x -1 = 3 => y = 0 , x = 4 ( loại vì y = 0 )
* TH2 : y + 1 = 3 ; x -1 = 1 => y = 2 ; x = 2 ( T/m )
Vậy x = y = 2
c) xy + 12 = x + y
Ta có :
xy + 12 = x + y
xy - x - y = 12
x.( y -1 ) - y = 12
[ x.(y -1 ) - y ] + 1 = 12 + 1
. ( y - 1 ) - ( y -1 ) = 13
( x - 1 ) . ( y - 1 ) = 13
=> x - 1 và y - 1 thuộc Ư( 13)
Mà Ư(13 ) = { -13 ; -1 ; 1 ; 13 }
Ta có bảng :\