K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có sai không bạn

1 tháng 12 2021

\(ĐK:y\left(x-2y\right)\ge0;y\left(4y-x\right)\ge0\)

Ta thấy \(y=0\) ko phải nghiệm của HPT

Với \(y\ne0\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}1=2x^2-5xy-y^2\\1=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\end{matrix}\right.\\ \Leftrightarrow2x^2-5xy-y^2=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\\ \Leftrightarrow2\cdot\dfrac{x^2}{y^2}-5\cdot\dfrac{x}{y}-1=\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}\)

Đặt \(\dfrac{x}{y}=a\left(y\ne0\right)\)

\(PT\Leftrightarrow2a^2-5a-1=\sqrt{a-2}+\sqrt{4-a}\left(2\le a\le4\right)\\ \Leftrightarrow\left(2a^2-5a-3\right)+\left(1-\sqrt{a-2}\right)+\left(1-\sqrt{4-a}\right)=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1\right)-\dfrac{a-3}{1+\sqrt{a-2}}+\dfrac{a-3}{1+\sqrt{4-a}}=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1-\dfrac{1}{1+\sqrt{a-2}}+\dfrac{1}{1+\sqrt{4-a}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\2a+\dfrac{\sqrt{a-2}}{\sqrt{a-2}+1}+\dfrac{1}{\sqrt{4-a}+1}=0\left(\text{*}\right)\end{matrix}\right.\)

Với \(a\ge2\Leftrightarrow\left(\text{*}\right)\text{ vô nghiệm}\)

\(\Leftrightarrow a=3\Leftrightarrow x=3y\)

Thay vào \(PT\left(1\right)\Leftrightarrow18y^2=1+15y^2+y^2\)

\(\Leftrightarrow y^2=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{3}{\sqrt{2}}\\y=-\dfrac{1}{\sqrt{2}}\Rightarrow x=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)

Vậy ...

NV
8 tháng 1

Lấy pt trên trừ dưới ta được:

\(x^2+2y^2+3xy-x-3y-2=0\)

\(\Leftrightarrow x^2+\left(3y-1\right)x+2y^2-3y-2=0\)

Coi đây là pt bậc 2 ẩn x tham số y, ta có:

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-3y-2\right)=\left(y+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3y+1+y+3}{2}=-y+2\\x=\dfrac{-3y+1-y-3}{2}=-2y-1\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2\left(-y+2\right)^2+y^2+5y\left(-y+2\right)-y+2=0\\2\left(-2y-1\right)^2+y^2+5y\left(-2y-1\right)-y+2=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

8 tháng 1

Không tính ra được tiếp à thầy?

NV
11 tháng 1

Trừ vế cho vế:

\(\Rightarrow x^2+2y^2+3xy-x-3y-2=0\)

\(\Leftrightarrow x^2+\left(3y-1\right)x+2y^2-3y-2=0\)

Coi đây là pt bậc 2 ẩn x tham số y

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-3y-2\right)=\left(y+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3y+1-y-3}{2}=-2y-1\\x=\dfrac{-3y+1+y+3}{2}=-y+2\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2\left(-2y-1\right)^2+y^2+5y\left(-2y-1\right)-y+2=0\\2\left(-y+2\right)^2+y^2+5y\left(-y+2\right)-y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-y^2+2y+4=0\\-2y^2+y+10=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=1-\sqrt{5}\Rightarrow x=-3+2\sqrt{5}\\y=1+\sqrt{5}\Rightarrow x=-3-2\sqrt{5}\\y=-2\Rightarrow x=4\\y=\dfrac{5}{2}\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

NV
14 tháng 1

Trừ vế cho vế:

\(\Rightarrow x^2+2y^2+3xy-x-3y=2\)

\(\Leftrightarrow\left(x^2+xy-2x\right)+\left(2xy+2y^2-4y\right)+x+y-2=0\)

\(\Leftrightarrow x\left(x+y-2\right)+2y\left(x+y-2\right)+x+y-2=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+2y+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y-2=0\\x+2y+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-y+2\\x=-2y-1\end{matrix}\right.\)

- Với \(x=-y+2\) thế vào pt đầu:

\(2\left(-y+2\right)^2+y^2+5y\left(-y+2\right)-y+2=0\)

\(\Leftrightarrow-2y^2+y+10=0\)

\(\Rightarrow\left[{}\begin{matrix}y=-2\Rightarrow x=4\\y=\dfrac{5}{2}\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

- Với \(x=-2y-1\) thế vào pt đầu:

\(2\left(-2y-1\right)^2+y^2+5y\left(-2y-1\right)-y+2=0\)

\(\Leftrightarrow-y^2+2y+4=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1-\sqrt{5}\Rightarrow x=-3+2\sqrt{5}\\y=1+\sqrt{5}\Rightarrow x=-3-2\sqrt{5}\end{matrix}\right.\)

10 tháng 7 2019

\(A=x^6+2x\left(x^2+y\right)+x^2+y^2+26\) 

   \(=x^6+2x^2+2xy+x^2+y^2+26\) 

    \(=x^6+2x^2+\left(x+y\right)^2+26\ge26\forall x;y\) 

Dấu "=" xảy ra<=> \(x=0\) và \(\left(x+y\right)^2=0\Rightarrow y=0\) 

Vậy Amin =26 tại x=y=0

11 tháng 7 2019

B=\(y^2-2xy+3x^2+2y-14x+1949\)

 \(=\left(y^2-2xy+x^2+2y-2x+1\right)+\left(2x^2-12x+18\right)+1930\)

 \(=\left(x-y-1\right)^2+2\left(x-3\right)^2+1930\)

  \(\ge1930\)

MinB=1930 khi \(\hept{\begin{cases}x=y+1\\x=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

ở bước đầu giải hệ theo m, bạn ko nên nhân với m vì nếu m=0 thì sẽ không giải được