Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) + y = 2 ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z ⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 3 - z - 2 ⇒ \(x\) = -1+ z
Thay \(x\) = - 1 + z vào biểu thức \(x\) + z = - 5 ta có: -1 + z + z = -5
⇒ 2z = 1 - 5 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = - 2
Thay z = - 2 vào biểu thức \(x\) = -1 + z ta có: \(x\) = -1 - 2 = -3
Thay \(x\) = - 3 vào biểu thức: y = 2 - \(x\) ta có: y = 2 - (-3) = 5
Vậy các số nguyên \(x\); y;z thỏa mãn đề bài là:
(\(x\); y; z) = (-3; 5; -2)
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
Từ các đẳng thức trên :
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2+3-5=0\)
\(\Rightarrow2x+2y+2z=2\left(x+y+z\right)=0\Rightarrow x+y+z=0\)
\(\Rightarrow z=\left(x+y+z\right)-\left(x+y\right)=0-2=-2\)
\(\Rightarrow x=\left(x+y+z\right)-\left(y+z\right)=0-3=-3\)
\(\Rightarrow y=\left(x+y+z\right)-\left(z+x\right)=0-\left(-5\right)=5\)
x=1
y=1
z=0
Là bằng 0