Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
a/ \(A=x-2009-4\sqrt{x-2009}+4=\left(\sqrt{x-2009}-2\right)^2\ge0\)
\(A_{min}=0\) khi \(\sqrt{x-2009}-2=0\Rightarrow x=2013\)
b/ \(\frac{1}{4}-\frac{\sqrt{x-2009}-1}{x-2009}+\frac{1}{4}-\frac{\sqrt{y-2010}-1}{y-2010}+\frac{1}{4}-\frac{\sqrt{z-2011}-1}{z-2011}=0\)
\(\Leftrightarrow\frac{x-2009-4\sqrt{x-2009}+4}{4\left(x-2009\right)}+\frac{y-2010-4\sqrt{y-2010}+4}{4\left(y-2010\right)}+\frac{z-2011-4\sqrt{z-2011}+4}{4\left(z-2011\right)}=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2013\\y=2014\\z=2015\end{matrix}\right.\)
1)\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|+3=5\\\left|x-2\right|+3=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=2\\\left|x-2\right|=-8\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
a/ \(\dfrac{6\left(16x+3\right)}{7}-8=\dfrac{3\left(16x+3\right)}{7}+7\)
\(\Leftrightarrow6\left(16x+3\right)-56=3\left(16x+3\right)+49\)
\(\Leftrightarrow96x+18-56-48x-9-49=0\)
\(\Leftrightarrow48x=96\)
\(\Leftrightarrow x=2\)
Vậy phương trình đã cho có nghiệm x=2
a) Đặt u = \(\dfrac{16x+3}{7}\), ta có:
\(\dfrac{6\left(16x+3\right)}{7}\) - 8 = \(\dfrac{3\left(16x+3\right)}{7}\) + 7
<=> 6.u - 8 = 3.u + 7
=> 6.u - 3.u = 8 + 7
=> 3.u = 15
=> u = 15 / 3
=> u = 5
<=> \(\dfrac{16x+3}{7}\) = 5
=> 16x + 3 = 5 . 7
=> 16x = 35 - 3
=> 16x = 32
=> x = 32 / 16
=> x = 2
Vậy S = { 2 }.
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)