K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

ê

21 tháng 12 2018

2x-3y+5z=1 hoặc =-1

TH1: \(\dfrac{x}{y}\)=\(\dfrac{3}{2}\)=>\(\dfrac{x}{3}\)=\(\dfrac{y}{2}\)=>\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)

\(\dfrac{y}{z}\)=\(\dfrac{5}{7}\)=>\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)=>\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)

\(\Rightarrow\)\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)=>\(\dfrac{2x}{30}\)=\(\dfrac{3y}{30}\)=\(\dfrac{5z}{70}\)

Áp dụng tính chát dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x-3y+5z}{30-30+70}\)=\(\dfrac{1}{70}\)

=>x=1.15:7=\(\dfrac{3}{14}\)

y=\(\dfrac{1}{7}\)

z=\(\dfrac{1}{5}\)

TH2:............=-1 tự tính nhé làm tương tựvuimình còn phải ôn bài

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
2 tháng 8 2017

Áp dụng tinshh chất dãy tỉ số bằng nhau ; ta được :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\)

Do đó :

\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)

\(\dfrac{y}{4}=2\Rightarrow y=2.4=8\)

\(\dfrac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy x = 6 ; y = 8 ; z = 10

2 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\) \

\(\Rightarrow x=2.3=6\)

\(y=2.4=8\)

\(z=2.5=10\)

16 tháng 10 2021

TÌM X Y Z

2 tháng 7 2018

a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

=> x=8

3y=18=>y=6

4z=72=>z=18

Vậy x=8 ; y=6 ; z=18

2 tháng 7 2018

b, Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)

Câu c bạn làm tương tự nhé!

d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)

Vậy...

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

23 tháng 9 2017

a/ Ta có ;

\(x+y+z=92\)

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)

\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Leftrightarrow x=20\\\dfrac{y}{15}=2\Leftrightarrow y=30\\\dfrac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)

Vậy .................

b/Ta có :

\(x+y-z=95\)

\(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}\)

Áp dụng t/x dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}=\dfrac{x+y-z}{15+10-5}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\Leftrightarrow x=75\\\dfrac{y}{10}=5\Leftrightarrow y=50\\\dfrac{z}{5}=5\Leftrightarrow z=25\end{matrix}\right.\)

Vậy ..

23 tháng 9 2017

a, \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7},x+y+z=92\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21},x+y+z=92\)

AD t/c DTS = nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

+) \(\dfrac{x}{10}=2\Rightarrow x=20\)

+) \(\dfrac{y}{15}=2\Rightarrow y=30\)

+) \(\dfrac{z}{21}=2\Rightarrow z=42\)

b, \(2x=3y=5z,x+y-z=95\)

\(\Rightarrow\dfrac{30x}{15}=\dfrac{30y}{10}=\dfrac{30z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6},x+y-z=95\)

AD t/c DTS = nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

+) \(\dfrac{x}{15}=5\Rightarrow x=75\)

+) \(\dfrac{y}{10}=5\Rightarrow y=50\)

+) \(\dfrac{z}{6}=5\Rightarrow z=30\)

c, Bn xem lại đề bài nha! gianroi

26 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y-5}{7}=\dfrac{z+2}{3}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}\)

\(x+2y=5z\Leftrightarrow x+2y-5z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}=\dfrac{x+2y-10-5z-10}{3+14-15}\)

\(=\dfrac{-20}{2}=-10\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=-65\\z=-32\end{matrix}\right.\)

Vậy...