Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)
và \(-x+y-z=11_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:
\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)
Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)
Vậy.....
b); c); d); e) làm tương tự.
Cách giải dùng dãy tỉ số để giải thôi
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{\left(8x-12y\right)+\left(12y-24z\right)}{-7-9}=\frac{8x-24z}{-16}=\frac{24z-8x}{16}\)
Mà theo đề bài thì \(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{24z-8x}{-13}\)
Do đó \(\frac{24z-8x}{-13}=\frac{24z-8x}{16}\Rightarrow24z-8x=0\Leftrightarrow z=\frac{x}{3}\)
Làm tương tự ta cũng được \(8x=12y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Suy ra \(\frac{x}{3}=\frac{y}{2}=z\)và x2+y2+z2=350
Tới đây dùng tính chất dãy tỉ số bằng nhau tính ra x=75,y=50;z=25
Vậy x=75;y=50;z=25
5,
Gọi số người lúc đầu ba đơn vị là x,y,z (người)
Số người lúc đầu ở đơn vị I là \(\dfrac{5}{4}x\)
Số người lúc đầu ở đơn vị II là \(\dfrac{10}{9}y\)
Số người lúc đầu ở đơn vị III là \(\dfrac{10}{11}z\)
Theo bài ra ta có \(\dfrac{5}{4}x=\dfrac{10}{9}y=\dfrac{10}{11}z\)
\(\Rightarrow\dfrac{5x}{4.10}=\dfrac{10y}{9.10}=\dfrac{10z}{11.10}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{z}{11}\)
Theo tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{z}{11}=\dfrac{x+y+z}{8+9+11}=\dfrac{112}{28}=4\)
\(\Rightarrow\dfrac{x}{8}=4\Rightarrow x=32\)
\(\dfrac{y}{9}=4\Rightarrow y=36\)
\(\dfrac{z}{11}=4\Rightarrow z=44\)
Vậy...
\(x+y-y-z+z+x=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:2\)
\(\Rightarrow x=\frac{5}{24}\)
Có x rồi bạn thế vào => ra được y rồi thế y vòa => được z
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{18x-27y}{100}=\frac{27y-24z}{101}=\frac{24z-18x}{102}=\frac{18x-27y+27y-24z+24z-18x}{100+101+102}=\frac{0}{303}=0\)
\(\Rightarrow\frac{27y-24z}{101}=0\Rightarrow27y-24z=0\Rightarrow27y=24z\Rightarrow9y=8z\Rightarrow\frac{y}{8}=\frac{z}{9}\) (1)
\(\frac{24z-18x}{102}=0\Rightarrow24z-18x=0\Rightarrow18x=24z\Rightarrow3x=4z\Rightarrow\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{12+8+9}=\frac{116}{29}=4\)
=> x/12 = 4 => x = 48
y/8 = 4 => y = 32
z/9 = 4 => z = 36