Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)
\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)
\(\Rightarrow x=1;y=-2;z=-1\)
<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0
<=>(x-1)2+3(y+2)2+2(z+1)2=0
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)
\(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)
\(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)
Chia nhỏ ra bạn ơi!
\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)
\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)
\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)
\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)
\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)
Vậy: \(x=1;y=-2;z=-1\)
\(=\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow x=1;y=\frac{3}{2};z=-2\)
Ta có:
x2+4y2+z2-2x-12y-4z-14=0
x2-2x+1+z2-4z+4+4y2-12y+9=0
(x-1)2+(z-2)2+(2y-3)2=0
Tổng 3 số không âm bằng 0
<=> x-1=0 và z-2=0 và 2y-3=0
<=> x=1 và z=2 và y=3/2
Lời giải:
$x^2+4y^2+z^2=2x+12y-4z-14$
$\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0$
$\Leftrightarrow (x^2-2x+1)+(4y^2-12y+9)+(z^2+4z+4)=0$
$\Leftrightarrow (x-1)^2+(2y-3)^2+(z+2)^2=0$
Vì $(x-1)^2\geq 0; (2y-3)^2\geq 0; (z+2)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-3)^2=(z+3)^2=0$
$\Rightarrow x=1; y=\frac{3}{2}; z=-3$
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\) \(\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\\\left(z+1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
vậy \(x=1;y=-2;z=-1\)
\(x^2+3y^2+2z^2-2z+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(3y^2+12y+12\right)+\left(2z^2-4z+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+4\right)^2+2\left(z-2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-4\\z=2\end{matrix}\right.\)
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)