K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Giải:

\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}\right)y=-\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}=-\dfrac{2}{3y}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)

\(\Leftrightarrow\dfrac{1}{2}.\dfrac{10}{11}=-\dfrac{2}{3y}\)

\(\Leftrightarrow\dfrac{5}{11}=-\dfrac{2}{3y}\)

\(\Leftrightarrow15y=-22\)

\(\Leftrightarrow y=-\dfrac{22}{15}\)

Vậy ...

11 tháng 6 2018

sao lại âm , hâm à bạn

27 tháng 2 2017

\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)

=> \(\frac{5}{11}y=\frac{2}{3}\)

=>y = \(\frac{2}{3}:\frac{5}{11}\)

=> y = \(\frac{22}{15}\)

3 tháng 4 2021

cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm

\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)

\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(2.\frac{10}{11}.y=\frac{2}{3}\)

\(\frac{20}{11}.y=\frac{2}{3}\)

\(\Rightarrow y=\frac{11}{30}\)

Study well 

7 tháng 7 2016

                            Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

                              \(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

                             \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

                            \(2A=1-\frac{1}{9.11}=1-\frac{1}{99}=\frac{98}{99}\)

                              \(A=\frac{98}{99}:2=\frac{49}{99}\)

                                Ủng hộ mk nha!!!

4 tháng 11 2015

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{11}\right)=\frac{1}{2}.\frac{10}{11}\)

A = \(\frac{5}{11}\)

31 tháng 7 2017

=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11

=1-1/11=10/11

đáp số:10/11

31 tháng 7 2017

\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(A\times2=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

5 tháng 3 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}\)

\(=\frac{50}{101}\)

5 tháng 3 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)

\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)

\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

25 tháng 7 2016

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)