Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 1-2-3+4+5-6-7+8+......+1989-1990-1991+1992+1993
=(1-2-3+4)+(5-6-7+8)+.....+(1989-1990-1991+1992)+1993
=0+0+...+0+1993=1993.
a.\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)
b.
\(\frac{x+4}{1990}+\frac{x+3}{1991}=\frac{x+2}{1992}+\frac{x+1}{1993}\Rightarrow2+\frac{x+4}{1990}+\frac{x+3}{1991}=2+\frac{x+2}{1992}+\frac{x+1}{1993}\)
\(\Rightarrow\left(1+\frac{x+4}{1990}\right)+\left(1+\frac{x+3}{1991}\right)=\left(1+\frac{x+2}{1992}\right)+\left(1+\frac{x+1}{1993}\right)\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}=\frac{x+1994}{1992}+\frac{x+1994}{1993}\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}-\frac{x+1994}{1992}-\frac{x+1994}{1993}=0\)
\(\Rightarrow\left(x+1994\right)\left(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\right)=0\)
\(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\ne0\Rightarrow x+1994=0\Rightarrow x=-1994\)
Áp dụng tính chất :
\(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{1993}+1}{10^{1992}+1}>\dfrac{10^{1993}+1+9}{10^{1992}+1+9}=\dfrac{10^{1993}+10}{10^{1992}+10}=\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=A\)
\(\Leftrightarrow B>A\)
a.
\(\left(0,25\right)^3\times32\)
\(=\left(0,25\right)^3\times2^5\)
\(=\left(0,25\right)^3\times2^3\times2^2\)
\(=\left(0,25\times2\right)^3\times4\)
\(=\left(0,5\right)^3\times4\)
\(=0,125\times4\)
\(=0,5\)
b.
\(\left(-0,125\right)^3\times80^4\)
\(=\left(-0,125\right)^3\times80^3\times80\)
\(=\left(-0,125\times80\right)^3\times80\)
\(=\left(-10\right)^3\times80\)
\(=-1000\times80\)
\(=-80000\)
c.
\(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\times\left(3^2+3-1\right)\)
\(=3^{1992}\times\left(9+3-1\right)\)
\(=3^{1992}\times11\)
\(\Rightarrow3^{1994}+3^{1993}-3^{1992}⋮11\)
d.
\(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\times\left(2^2+2-1\right)\)
\(=2^{24}\times\left(4+2-1\right)\)
\(=2^{24}\times5\)
\(\Rightarrow4^{13}+32^5-8^8⋮5\)
Chúc bạn học tốt
Bài 2:
a: \(5^{2008}+5^{2007}+5^{2006}\)
\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)
b: \(8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
A=1-2-3 +4+5-6-7+8 +.....+1993
\(A=A_1+1993\)
\(A_1=\left(1-2-3+4\right)+\left(5-6-7+8\right)+....+\left(1989-1990-1991+1992\right)\)\(A_1=0+0+0...+0\)
A=1993
\(A=1-2-3+4+5-6-7+8+...+1989-1990-1991+1992+1993\)
\(A=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993\)
\(A=0+0+...+0+1993\)
\(A=1993\)