Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
= ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
= ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )
= ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )
= ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )
= 8/9 + 1/2 . ( 1 - 1/11 )
= 8/9 + 1/2 . 10/11
= 8/9 + 5/11
= 133/99
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
= ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
= ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )
= ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )
= ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )
= 8/9 + 1/2 . ( 1 - 1/11 )
= 8/9 + 1/2 . 10/11
= 8/9 + 5/11
= 133/99
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)
\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{5}{39}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130