K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 5 2021

\(S=1C_{100}^1+\left(4+1\right)C_{100}^2+\left(4.2+1\right)C_{100}^3+...+\left(4.99+1\right)C_{100}^{100}\)

\(=C_{100}^1+C_{100}^2+...+C_{100}^{100}+4\left(1.C_{100}^2+2.C_{100}^3+...+99C_{100}^{100}\right)\)

\(=2^{100}-1+4S_1\)

Xét khai triển:

\(\left(1+x\right)^{100}=C_{100}^0+xC_{100}^1+x^2C_{100}^2+...+x^{100}C_{100}^{100}\)

\(\Rightarrow\dfrac{\left(1+x\right)^{100}}{x}=\dfrac{C_{100}^0}{x}+C_{100}^1+xC_{100}^2+...+x^{99}C_{100}^{100}\)

Đạo hàm 2 vế:

\(\dfrac{100x\left(1+x\right)^{99}-\left(1+x\right)^{100}}{x^2}=-\dfrac{C_{100}^0}{x^2}+C_{100}^2+2xC_{100}^3+...+99x^{98}C_{100}^{100}\)

Thay \(x=1\)

\(\Rightarrow100.2^{99}-2^{100}=-1+S_1\)

\(\Rightarrow S_1=49.2^{100}+1\)

\(\Rightarrow S=2^{100}-1+4\left(49.2^{100}+1\right)=...\)

13 tháng 11 2021

 \(S=C_{100}^1-C_{100}^2+...-C_{100}^{100}\)

Ta có:

\(\Rightarrow S_1=C_{100}^0-C_{100}^1+C_{100}^2+...+C_{100}^{100}=0\)

\(\Rightarrow C_{100}^0=C_{100}^1-C_{100}^2+...-C_{100}^{100}=1\)(chuyển vế)

Vậy \(S=1\)

        

27 tháng 2 2021

a, 1-2+3-4+...+99-100

= (1-2)+(3-4)+...+(99-100)

= -1 + (-1) +...+ (-1)

= -1 x 50

= -50

b, 1+2-3-4+5+6-...+97+98-99-100

= (1+2-3-4) + (5+6-7-8) + ... + (97+98-99-100)

= -4 +( -4) + .... + (-4)

= -4 x 25

= -100

NV
14 tháng 11 2021

\(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}=2^{n-1}\)

\(\Rightarrow S=n.2^{n-1}\)

NV
23 tháng 10 2020

Chia các số từ 1 đến 100 thành 3 nhóm:

\(A=\left\{1;4;7;...;100\right\}\) gồm 34 số chia 3 dư 1

\(B=\left\{3;6;9;...;99\right\}\) gồm 33 số chia hết cho 3

\(C=\left\{2;5;...;98\right\}\) gồm 33 số chia 3 dư 2

3 viên bi có tổng chia hết cho 3 khi chúng thỏa mãn: 3 viên cùng 1 nhóm hoặc 3 viên nằm ở 3 nhóm khác nhau

Vậy có: \(C_{34}^3+C_{33}^3+C_{33}^3+C_{34}^1.C_{33}^1.C_{33}^1=...\) số cách thỏa mãn

14 tháng 2 2017

Ta có 

Chọn A