Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(1+\frac{1}{199}\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{2}{198}+1\right)+1\)
\(=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}\)
\(=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Khi đó A/B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\left[\frac{1}{199}+1\right]+\left[\frac{2}{198}+1\right]+\left[\frac{3}{197}+1\right]+...+\left[\frac{198}{2}+1\right]}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{200\left[\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right]}=\frac{1}{200}\)
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
\(=1+\frac{1}{199}+1+\frac{2}{198}+...+\frac{199}{1}+1-199\)
\(=200+\frac{200}{2}+...+\frac{200}{199}-199\)
\(=1+\frac{200}{2}+...+\frac{200}{199}\)
\(=200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{200}\)
Sửa đề : \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+......+\frac{1}{2^{199}}\)
\(\Rightarrow2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{198}}\)
\(\Rightarrow2A-A=A=\frac{1}{2}-\frac{1}{2^{199}}< \frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Ta có: B=1/199+2/198+3/197+...+197/3+198/2+199/1
= (1/199+1)+(2/198+1)+(3/197+1)+...+(197/3+1)+(198/2+1)+200/200
=200/199+200/198+200/197+...+200/3+200/2+200/1+200/200
=200( 1/200+1/199+1/198+1/197+...+1/3+1/2)
=200*A
=> A/B=A/200A=1/200
2^2002^199-2^198-2^197-....-2-1 giải giúp mình với toán lớp 6 đó đề học sinh giỏi nhé