Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: A = 1/6+1/12+1/20+1/30+.........+1/210
A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/14.15
A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/14 - 1/15
A = 1/2 - 1/15
A = 13/30
Ta có: 1/2= 1/1- 1/2
1/6= 1/2 - 1/3
1/12= 1/3- 1/4
...
1/30= 1/5 - 1/6
1/42= 1/6 - 1/7
Thay vào tổng kia: 1/2+1/6+...+1/30+1/42= 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/5 - 1/6 + 1/6 - 1/7 = 1/2 - 1/7= 5/14
Chúc bạn học tốt. Thân!
Ta có
\(\frac{1}{2}=\frac{1}{1.2};\frac{1}{6}=\frac{1}{2.3};\frac{1}{12}=\frac{1}{3.4};\frac{1}{20}=\frac{1}{4.5};\frac{1}{30}=\frac{1}{5.6};\frac{1}{42}=\frac{1}{6.7}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
Ta thấy:
\(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
Thấy
\(-\frac{1}{2}+\frac{1}{2}=0;-\frac{1}{3}+\frac{1}{3}=0;...;-\frac{1}{6}+\frac{1}{6}=0\)
Ta coi như hết
\(\Rightarrow A=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
1/2+1/6+1/12+1/20+1/30+...+1/90=
1/1*2+1/2*3+1/3*4+...+1/9*10=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10=
1/1-1/10=9/10 ban a
1/2+1/6+1/12+1/20+1/30+...+1/90
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+...+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/9-1/10
=1-1/10
=9/10
1/2+1/6+1/12+1/20+1/30+1/42
=1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)
=1-1/7
=6/7
neu co gi sai sot xin gui lai loi nhan
6/7 day minh vua lam dung ne o violympic do.
k cho minh nha cac ban.
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\)+...+\(\dfrac{1}{182}\)+ 210
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}\)+...+ \(\dfrac{1}{13\times14}\)+ 210
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+\(\dfrac{1}{13}\) - \(\dfrac{1}{14}\) + 210
A = 1 - \(\dfrac{1}{14}\) + 210
A = 211 - \(\dfrac{1}{14}\)
A = \(\dfrac{2953}{14}\)