Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
1.
A = x2 + x4 + x6 + ... + x100 ( 50 số hạng )
A = ( -1 )2 + ( -1 )4 + ( -1 )6 + ... + ( -1 )100
A = 1 + 1 + 1 + ... + 1
A = 50
2.
| x - 1/3 | + 4/5 = | (-3,2) + 2/50 |
| x - 1/3 | + 4/5 = 3,16
| x - 1/3 | = 2,36
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2,36\\x-\frac{1}{3}=-2,36\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{202}{75}\\x=\frac{-152}{75}\end{cases}}\)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.( 3 + 0 ) + 2.3.( 4 - 1 ) + .. + 99.100.( 101 - 98 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = ( 99.100.101 ) : 3 = 333300
Vậy A = 333300
mk làm câu b
A=1.2+2.3+3.4+.......+99.100
3.A =3.1.2+2.3.3+3.4.3+............+99.100.3
3.A= 1.2.3+2.3.(4-1)+3.4.(5-2) +..........+99.100.(101-98)
3.A=1.2.3+2.3.4-1.2.3 +3.4.5-2.3.4+............+99.100.101-98.99.100
vì cứ +2.3.4 lại -2.3.4 cứ như thế
3.A=99.100.101
A=(99.100.101):3
A=333300
chúc bạn may mắn trong học tập
mk vừa học xong
a, 16/2n=2
<=>2n=8
<=>n=4
b, (-3)^n =-27*81=-2187
n=7( vì (-3)^7 =-2187
c, 8^n : 2^n =4
<=> (8:2)^n=4
4^n=4
n=1
a: N=(7-8)+(9-10)+...+(2009-2010)
=(-1)+(-1)+....+(-1)
=-1*1002=-1002
b: Đặt A=2+3+4+...+2023
Số số hạng là 2023-2+1=2022(số)
Tổng là (2023+2)*2022/2=2047275
=>P=1-2047275=-2047274
A= 1*2+2*3+3*4+..........+n*(n+1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n+1) . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).(n+2-n+1)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + n.(n+1)(n+2) - (n-1)n(n+1)
3A = n(n+1)(n+2)
A = n(n+1)(n+2)/3
* là gì vậy bạn