Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
Do \(a+b+c=1\) nên BĐT cần chứng minh tương đương:
\(2\left(a^3+b^3+c^3\right)+3abc\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy, ta có:
\(2\left(a^3+b^3+c^3\right)=\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(c^3+a^3\right)\)
\(=\left(a+b\right)\left(a^2+b^2-ab\right)+\left(b+c\right)\left(b^2+c^2-bc\right)+\left(c+a\right)\left(c^2+a^2-ca\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)+\left(b+c\right)\left(2bc-bc\right)+\left(c+a\right)\left(2ca-ca\right)\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Chọn B
Ta có: a3 + b3 = (a + b).(a2 – ab + b2)
= (a + b).[(a2 + 2ab + b2) – 3ab]
= (a + b).[(a + b)2 – 3ab]
Thay a + b = - 7 và ab = 12 ta được:
a3 + b3 = -7.[(-7)2 – 3.12] = -7.(49 – 36) = - 7.13 = - 91
Với ab = 6, a + b = –5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (–5)3 – 3.6.(–5) = –53 + 3.6.5 = –125 + 90 = –35
Ta có
( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 = a 3 + b 3 + 3 a b ( a + b )
Suy ra a 3 + b 3 = ( a + b ) 3 – 3 a b ( a + b )
Hay Q = ( a + b ) 3 – 3 a b ( a + b )
Thay a + b = 5 và a.b = -3 vào Q = ( a + b ) 3 – 3 a b ( a + b ) ta được
Q = 5 3 – 3 . ( - 3 ) . 5 = 170
Vậy Q = 170
Đáp án cần chọn là: A
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......