Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)
b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)
d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)
a: \(A=\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{3\cdot\sqrt{2+\sqrt{3}}}=\dfrac{4\left(\sqrt{3}+1\right)}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3\left(\sqrt{3}+1\right)}=\dfrac{4}{3}\)
b: \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\left|3\sqrt{5}-3\right|\)
\(=\sqrt{5}-\sqrt{3}-3\sqrt{5}+3=3-\sqrt{3}-2\sqrt{5}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
b) \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{2}\)
\(=\sqrt{2}-\sqrt{2}\)
\(=0\)
c) \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\cdot\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)
\(=\left[2-\dfrac{\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\right]\cdot\left[2-\dfrac{\sqrt{5}\left(3-\sqrt{5}\right)}{3-\sqrt{5}}\right]\)
\(=\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)\)
\(=4-4\sqrt{5}+5\)
\(=9-4\sqrt{5}\)
d) \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(=6-121\)
\(=-115\)
a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)
c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)
d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)
a: \(E=1+1=2\)
b: \(=6+3\sqrt{5}+\sqrt{6}-\sqrt{2}+\sqrt{6}-\sqrt{5}\)
\(=6+2\sqrt{6}-\sqrt{2}+2\sqrt{5}\)
d: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{29}\)
a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3-2}=1\)
b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`
`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`
`=sqrt{3-2}=1`
`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`
`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`
`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`
`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`
`c)C=3-sqrt{3-sqrt5}`
`=3-sqrt{(6-2sqrt5)/2}`
`=3-sqrt{(sqrt5-1)^2/2}`
`=3-(sqrt5-1)/sqrt2`
`=3-(sqrt{10}-sqrt2)/2`
`=(6-sqrt{10}+sqrt2)/2`