K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 10 2023

Lời giải:

$A=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{100}-\sqrt{99}}{(\sqrt{99}+\sqrt{100})(\sqrt{100}-\sqrt{99})}$

$=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+....+\frac{\sqrt{100}-\sqrt{99}}{1}$
$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}$

$=\sqrt{100}-1=10-1=9$

26 tháng 8 2021

Bài 1: 

\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)

\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)

\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)

Bài 2: 

Ta có: G-1

\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)

\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ

hay \(G\le1\)

21 tháng 10 2021

a: \(\cos\alpha=\dfrac{1}{2}\)

\(\tan\alpha=\sqrt{3}\)

\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)

20 tháng 5 2021

Câu 1:

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\left(x\ge0;x\ne9\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

Câu 2:

\(V\left(3\right)=12000000-1400000.3=7800000\)

Có: \(V\left(t\right)=6400000\) \(\Leftrightarrow12000000-1400000t=6400000\)

\(\Leftrightarrow t=4\) => Sau 4 năm thì gtri chiếc máy tính này còn 6400000 đ

b,\(\left\{{}\begin{matrix}2x+y=5\\mx+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{4-mx}{3}=5\\y=\dfrac{4-mx}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(6-m\right)=11\left(1\right)\\y=\dfrac{4-mx}{3}\end{matrix}\right.\)

Xét \(m=6\) thay vào pt ta đc \(\left\{{}\begin{matrix}2x+y=5\\6x+3y=4\end{matrix}\right.\) (vô nghiệm)

\(\Rightarrow m\ne6\)

Từ (1) \(\Rightarrow x=\dfrac{11}{6-m}\)

 \(\Rightarrow y=\dfrac{4-\dfrac{11m}{6-m}}{3}\)\(=\dfrac{24-15m}{3\left(6-m\right)}\)

\(xy>0\Leftrightarrow\dfrac{11}{6-m}.\dfrac{24-15m}{3\left(6-m\right)}>0\)

\(\Leftrightarrow\dfrac{11\left(24-15m\right)}{3\left(6-m\right)^2}>0\) 

\(\Leftrightarrow24-15m>0\Leftrightarrow m< \dfrac{24}{15}\)

 

 

20 tháng 5 2021

`A=(2sqrtx)/(sqrtx-3)-(x+9sqrtx)/(x-9)`
`đk:x>=0,x ne 9`
`A=(2x+6sqrtx)/(x-9)-(x+9sqrtx)/(x-9)`
`=(x-3sqrtx)/(x-9)`
`=sqrtx/(sqrtx+3)`

9 tháng 12 2015

\(A=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}:2\sqrt{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)

\(=\frac{1}{2.2}=\frac{1}{4}\)

24 tháng 6 2021

Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn

10 tháng 2 2022

\(P=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

\(Q=\dfrac{1}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1\)

Do \(2< \sqrt{2}+1\)

=> P < Q

10 tháng 2 2022

Này anh lộn rồi á

9 tháng 6 2017

bằng 2.570658641

18 tháng 12 2017
bằng 2.570658641 đúng không?