K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6

\(A=5+5^2+5^3+\dots+5^{200}\\5A=5^2+5^3+5^4+\dots+5^{201}\\5A-A=(5^2+5^3+5^4+\dots+5^{201})-(5+5^2+5^3+\dots+5^{200})\\4A=5^{201}-5\\\Rightarrow A=\frac{5^{201}-5}{4}\)

7 tháng 6

A = 5 + 5² + 5³ + ... + 5²⁰⁰

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰¹

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰¹) - (5 + 5² + 5³ + ... + 5²⁰⁰)

= 5²⁰¹ - 5

loading...

18 tháng 10 2023

A = 5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹) - (5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰)

= 5⁵¹ - 5

⇒ A = (5⁵¹ - 5) : 4

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

5A=5+5^2+...+5^2023

=>4A=5^2023-1

=>\(A=\dfrac{5^{2023}-1}{4}\)

\(2B-A=\dfrac{5^{2023}}{4}-\dfrac{5^{2023}-1}{4}=\dfrac{1}{4}\)

2 tháng 1 2023
13 tháng 11 2023

a) \(S=5+5^2+...+5^{2006}\)

\(5S=5^2+5^3+...+5^{2007}\)

\(5S-S=5^2+5^3+5^4+...+5^{2007}-5-5^2-5^3-...-5^{2006}\)

\(4S=5^{2007}-5\)

\(S=\dfrac{5^{2007}-5}{4}\)

b) \(S=5+5^2+5^3+...+5^{2006}\)

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(S=5\cdot\left(1+5^3\right)+5^2\cdot\left(1+5^3\right)+...+5^{2003}\cdot\left(1+5^3\right)\)

\(S=\left(1+5^3\right)\cdot\left(5+5^2+...+5^{2003}\right)\)

\(S=126\cdot\left(5+5^2+...+5^{2003}\right)\) ⋮ 126 

10 tháng 10 2023

loading...  loading...  loading...  

12 tháng 10 2023

a: \(12+2^2+3^2+4^2+5^2\)

\(=12+4+9+16+25\)

\(=16+50=66\)

\(\left(1+2+3+4+5\right)^2=15^2=225\)

=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)

b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)

c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)

d: \(18\cdot4^{500}=18\cdot2^{1000}\)

\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)

=>\(18\cdot4^{500}>2^{1004}\)

e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)

\(=2023^{2025}\)

12 tháng 10 2023

dạ em nhầm ạ phần a) số 12 phải là 12

30 tháng 7 2023

  A= 1 + 5 + 52 + 5 + ... + 5800 

5A=       5 + 5 + 53 + .... +5 800 + 5801  

5A - A = 5801  - 1 

4a = 5801 - 1 

    5801 - 1 +1 = 5n

⇒  5801 = 5n ⇒ n = 801

29 tháng 6 2023

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

29 tháng 6 2023

e đang cần gấp, có ai đến giúp e ko?

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee