Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{5}{15}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
Dấu . là nhân nha
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)
\(A=\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}+...+\dfrac{1}{87\times89}\)
\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{87}-\dfrac{1}{89}\)
\(A=\dfrac{1}{5}-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{89}\)
\(A=\dfrac{1}{5}-\dfrac{1}{89}\)
\(A=\dfrac{84}{445}\)
Vậy, `A=84/445.`
A = \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\)+\(\dfrac{1}{9\times11}\)+...+\(\dfrac{1}{87\times89}\)
A = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2}{5\times7}\)+\(\dfrac{2}{7\times9}\)+\(\dfrac{2}{9\times11}\)+...+\(\dfrac{2}{87\times89}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) +...+ \(\dfrac{1}{87}\) - \(\dfrac{1}{89}\))
A = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{5}\) - \(\dfrac{1}{89}\))
A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{84}{445}\)
A = \(\dfrac{42}{445}\)
\(A=\frac{1}{1\times6\times6}+\frac{1}{2\times9\times8}+\frac{1}{3\times12\times10}+...+\frac{1}{98\times297\times200}\)
\(A=\frac{1}{1\times\left(2\times3\right)\times\left(2\times3\right)}+\frac{1}{2\times\left(3\times3\right)\times\left(2\times4\right)}+...+\frac{1}{98\times\left(99\times3\right)\times\left(100\times2\right)}\)
\(A=\frac{1}{6}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{98\times99\times100}\right)\)
\(12\times A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{98\times99\times100}\)
\(12\times A=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{98\times99}-\frac{1}{99\times100}\right)\)
\(12\times A=\frac{1}{1\times2}-\frac{1}{99\times100}=\frac{4949}{9900}\)
\(A=\frac{4949}{118800}\)
`@` `\text {Ans}`
`\downarrow`
\(\text{ A = }\dfrac{1}{4\times8}+\dfrac{1}{8\times12}+\dfrac{1}{12\times16}+...+\dfrac{1}{172\times176}\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{4}{4\times8}+\dfrac{4}{12\times16}+...+\dfrac{4}{172\times176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{16}+...+\dfrac{1}{172}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\dfrac{43}{176}\)
\(\text{A = }\dfrac{43}{704}\)
Đáp số: `\text {A =} 43/704.`
A = 1/4 x 8 + 1/8 x 12 + 1/12 x 16 + ... + 1/176 x 180
=> 4A = 4/4 x 8 + 4/8 x 12 + 4/12 x 16 + ... + 4/176 x 180
=> 4A = 1/4 - 1/8 + 1/8 - 1/12 + 1/12 - 1/16 + ... 1/176 - 1/180
=> 4A = 1/4 - 1/180
=> 4A = 45/180 - 1/180
=> 4A = 44/180
=> 4A = 11/45
=> A = 11/45 : 4
=> A = 11/180
Vậy A = 11/180
A = \(\dfrac{1}{4\times8}\) + \(\dfrac{1}{8\times12}\) + \(\dfrac{1}{12\times16}\) +...+ \(\dfrac{1}{176\times180}\)
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{4}{4\times8}\)+ \(\dfrac{4}{12\times16}\)+...+ \(\dfrac{4}{176\times180}\))
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\) +...+ \(\dfrac{1}{176}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)(\(\dfrac{1}{4}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)\(\dfrac{11}{45}\)
A = \(\dfrac{11}{180}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
A) \(\frac{1}{6}\) = 0,1666666665
B) 0,1666669167
\(\frac{1}{6}\) < \(\frac{111111}{666665}\)
Bạn lấy tử chia cho mẫu là ra
A = \(\dfrac{1}{3\times6}\) + \(\dfrac{1}{6\times9}\) + \(\dfrac{1}{9\times12}\)+...+\(\dfrac{1}{144\times147}\)
A = \(\dfrac{1}{3}\) \(\times\)( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+\(\dfrac{1}{9\times12}\)+...+\(\dfrac{3}{144\times147}\))
A = \(\dfrac{1}{3}\) \(\times\)(\(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{144}-\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\)\(\times\)(\(\dfrac{1}{3}\) - \(\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\) \(\times\)\(\dfrac{16}{49}\)
A = \(\dfrac{16}{147}\)