K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)

\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)

\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)

\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)

Vậy \(A=\dfrac{-5}{12}.\)

14 tháng 3 2017

\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)

\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)

\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)

\(C=2-\dfrac{1}{2^{2016}}\)

18 tháng 3 2022

a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)

\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)

\(=-\dfrac{17}{168}\)

b)  \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)

\(=1\div\dfrac{3}{5}\)

\(=\dfrac{5}{3}\)

18 tháng 3 2022

Còn câu ở trên nx :<

a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)

=\(\dfrac{10}{11}.\dfrac{-1}{2}\)

=\(\dfrac{-5}{11}\)

7 tháng 8

b; 

B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\)\(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8

B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8

B = \(\dfrac{2}{7}\) - 8

B = \(\dfrac{2}{7}-\dfrac{56}{7}\)

B = - \(\dfrac{54}{7}\)

28 tháng 3 2018

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).......\left(1-\dfrac{1}{10}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).........\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{9}{10}\)

\(=\dfrac{1}{10}\)

a: \(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2=\dfrac{49}{81}\)

b: \(\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3=-\dfrac{1}{1000}\)

c: \(\left(-\dfrac{10}{3}\right)^5\cdot\left(-\dfrac{6}{4}\right)^4=-\dfrac{6250}{3}\)

d: \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(-\dfrac{3}{2}\right)^3=-\dfrac{2}{9}\)

28 tháng 5 2022

`1//([-1]/2)^2 . |+8|-(-1/2)^3:|-1/16|=1/4 .8+1/8 .16=2+2=4`

`2//|-0,25|-(-3/2)^2:1/4+3/4 .2017^0=0,25-2,25.4+0,75.1=0,25-9+0,75=-8,75+0,75-8`

`3//|2/3-5/6|.(3,6:2 2/5)^3=|-1/6|.(3/2)^3=1/6 . 27/8=9/16`

`4//|(-0,5)^2+7/2|.10-(29/30-7/15):(-2017/2018)^0=|1/4+7/2|.10-1/2:1=|15/4|.10-1/2=15/4 .10-1/2=75/2-1/2=37`

`5// 8/3+(3-1/2)^2-|[-7]/3|=8/3+(5/2)^2-7/3=8/3+25/4-7/3=107/12-7/3=79/12`

2 tháng 5 2023

1) Ta có 

\(C=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\)

\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}\)

\(C=\dfrac{1}{2022}\)

2) \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A\) \(=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow16A=12A+4A=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

\(=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\) \(< 3\). Từ đó suy ra \(A< \dfrac{3}{16}\)

Ta có: \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)

\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-99}{100}\)

\(=-\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)

\(=-\dfrac{10+1}{2\cdot10}=\dfrac{-11}{20}\)

Phải thế này nha bạn!

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\)

\(=\dfrac{2^2-1^2}{2^2}.\dfrac{3^2-1^2}{3^2}.\dfrac{4^2-1^2}{4^2}...\dfrac{10^2-1^2}{10^2}\)

\(=\dfrac{\left(2+1\right)\left(2-1\right)}{2.2}.\dfrac{\left(3+1\right)\left(3-1\right)}{3.3}.\dfrac{\left(4+1\right)\left(4-1\right)}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)

\(=\dfrac{\left[1.2.3...\left(10+1\right)\right]\left[3.4.5...\left(10-1\right)\right]}{\left(2.3.4...10\right)\left(2.3.4...10\right)}\)

\(=\left(10+1\right).\dfrac{1}{2.10}\)

\(=\dfrac{11}{20}\)

Theo mình nghĩ phải như thế này.

9: 

\(=5+\dfrac{1}{5}-\dfrac{2}{9}-2+\dfrac{1}{23}+\dfrac{73}{35}-\dfrac{5}{6}-8-\dfrac{2}{7}+\dfrac{1}{18}\)

\(=\left(5-2-8\right)+\left(\dfrac{1}{5}+\dfrac{73}{35}-\dfrac{2}{7}\right)+\left(-\dfrac{2}{9}+\dfrac{1}{18}-\dfrac{5}{6}\right)+\dfrac{1}{23}\)

\(=\left(-5\right)+\dfrac{7+73-10}{35}+\dfrac{-4+1-15}{18}+\dfrac{1}{23}\)

\(=-5+2-1+\dfrac{1}{23}=-4+\dfrac{1}{23}=-\dfrac{91}{23}\)

10: \(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)

=1/64