Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,tổng quát: (2k+1)/[k(k+1)^2]
=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2
áp dụng vào ,kết quả =2024/2025
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
Xét số hạng tổng quát:
\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)
= \(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)
Thay k từ 1 đến 12 ta được:
A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)
A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)
A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)
Rồi tiếp tục làm nhé bạn.
\(\frac{150}{5.8}+\frac{150}{8.11}+\frac{150}{11.14}+.....+\frac{150}{47.50}\)
\(=50.\left(\frac{3}{5.8}+\frac{5}{8.11}+.....+\frac{3}{47.50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{47}-\frac{1}{50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(=50.\frac{9}{50}=9\)
\(A=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{n^2}\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{n^2-1}{n^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
\(=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{3.4.5...\left(n+1\right)}{2.3.4...n}\)
\(=\frac{1}{n}.\frac{n+1}{2}\)
\(=\frac{n+1}{2n}\)
\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-98^2}{98^2}.\frac{1-99^2}{99^2}\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{98^2-1}{98^2}.\frac{99^2-1}{99^2}\)
= \(\frac{\left(2-1\right).\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right).\left(4+1\right)}{4^2}...\frac{\left(98-1\right)\left(98+1\right)}{98^2}.\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)
\(=\frac{\left(2-1\right).\left(3-1\right).\left(4-1\right)...\left(99-1\right)}{2.3.4...98.99}.\frac{\left(2+1\right).\left(3+1\right).\left(4+1\right)...\left(99+1\right)}{2.3.4...98.99}\)
\(=\frac{1.2.3....98}{2.3.4...98.99}.\frac{3.4.5...100}{2.3.4...98.99}\)
\(=\frac{1}{99}.\frac{100}{2}\)
\(=\frac{50}{99}\)
Chúc bạn học tốt !!!
toi la Hai