Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+......+1/999-1/1000+1
=1-1/1000+1 (-1/2+1/2=0, -1/3+1/3=0. nên chỉ còn lai các số ko cùng cặp)
=999/1000+1
=1999/1000
Đáp án là 1999/1000
Mình không thể viết cách giải dc vì giải lâu lắm!
Vậy nha, chúc bạn may mắn
Bài 1:
Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)
\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)
\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{2x19}{20}=\frac{19}{10}\)
Bài 2:
Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)
Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)
\(Bx100=\frac{9}{10}x100=90\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)
=> \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)
a.1/7 + 2/7 + 3/7 + 4/7 + 5/7 + 6/7 = ( 1/7+6/7) + ( 2/7+5/7) + (3/7+4/7)
= 1 + 1 + 1
= 3
b. = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 ( loại bỏ các p/s giống nhau)
= 1/1 - 1/6
= 5/6
a. Các phân số bé hơn 1 có mẫu số bằng 7 là: \(\frac{1}{7};\frac{2}{7};\frac{3}{7};\frac{4}{7};\frac{5}{7};\frac{6}{7}\)
Ta có : \(\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}+\frac{6}{7}\)
\(=\frac{1+2+3+4+5+6}{7}=\frac{21}{7}=3\)
b. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)
Ta có \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{998\times999}+\frac{1}{999\times1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)