Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $99^3+1+3(99^2+99)=99^3+3.99^2.1+3.99.1^2+1^3=(99+1)^3=100^3=1000000$
b. $11^3-1-3(11^2-11)=11^3-3.11^2.1+3.11.1^2-1^3=(11-1)^3=10^3=1000$
a: \(36^2+26^2-52\cdot36=\left(36-26\right)^2=10^2=100\)
b: \(99^3+1+3\left(99^2+99\right)\)
\(=\left(99+1\right)^3-3\cdot99\cdot1\cdot\left(99+1\right)+3\left(99^2+99\right)\)
=100^3=10^6
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
\(\frac{9}{5}\)S = 9+99+...+99...9 (50 chữ số 9)
=10-1+102-1+...+1050-1
=(10+102+...+1050)-(1+1+...+1)
=(1051-10) - 50
=1051-60
\(\Rightarrow\)S=(1051-60)/\(\frac{9}{5}\)= 5(1051-60)/9
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
Số lượng số hạng:
\(\left(199-3\right):4+1=50\) (số hạng)
Tổng:
\(\left(3+199\right)\times50:2=5050\)
Lời giải:
$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$
$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$
$=100+99+98+97+...+2+1=100(100+1):2=5050$
A = 1 + 2 + 3 + ... + 99 + 100
Tổng A có số số hạng là \(\frac{100-1}{1}+1=100\)(số hạng)
=>\(A=\frac{\left(100+1\right).100}{2}=4950\)
B = 12 + 22 + 32 + ... + 992 + 1002
Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath
C = 13 + 23 + 33 + ... + 993 + 1003
https://lop67.tk/hoidap/16575/ti%CC%81nh-a-1-3-2-3-3-3-100-3-v%C3%A0-b-1-3-2-3-3-3-4-3-99-3-100-3