K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Áp dụng công thức Bài 46 ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng vào hình ngũ giác đều nội tiếp đường tròn bán kính 3cm ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

11 tháng 9 2018

Theo bài 46 ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng vào hình ngũ giác đều ngoại tiếp đường tròn bán kính 3cm ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

31 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

14 tháng 11 2018

Chọn đáp án C.

Gọi M là trung điểm của BC: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng định lí Pytago vào tam giác ABM ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

11 tháng 8 2018

Chọn đáp án B.

Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.

Gọi M là trung điểm BC:

 

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

26 tháng 11 2019

*cách vẽ:

- vẽ đường tròn (O,2cm)

- Từ một điểm A trên đường tròn (O;2cm) đặt liên tiếp các cung bằng nhau có dây căng cung bằng 2cm

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-Nối AB, BC, CD, DE, EG, GA ta được lục giác đều ABCDEG nội tiếp trong đường tròn (O;2cm)

-kẻ đường kính vuông góc với AB và DE cắt đường tròn lần lượt tại I và L. Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-kẻ đường kính vuông góc với BC và EG cắt đường tròn lần lượt tại J và M.Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-kẻ đường kính vuông góc với CD và AG cắt đường tròn lần lượt tại N và K.Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

-Nối AI , IB, BJ, JC, CK, KD, DL, LE, EM, MG, GN, NA đa giác AIBJCKDLEMGN là đa giác đều mười hai cạnh nội tiếp trong đường tròn (O;2cm)