K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).

Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5)  (m2). (1)

Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2) 

  • Còn lại hệ pt tự giải nốt nhé

Bài 11: 

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 90m nên ta có phương trình:

\(2\cdot\left(x+y\right)=90\)

\(\Leftrightarrow x+y=45\)(1)

Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)

Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:

\(\left(x-5\right)\left(y-2\right)=xy-140\)

\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)

\(\Leftrightarrow-2x-5y+150=0\)

\(\Leftrightarrow-2x-5y=-150\)

\(\Leftrightarrow2x+5y=150\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)

Diện tích mảnh đất là:

\(x\cdot y=25\cdot20=500\left(m^2\right)\)

Vậy: Diện tích mảnh đất là 500m2

Bài 12:

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 80m nên ta có phương trình:

\(2\cdot\left(x+y\right)=80\)

\(\Leftrightarrow x+y=40\)(3)

Diện tích ban đầu của mảnh đất là:

\(xy\left(m^2\right)\)

Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:

\(\left(x+3\right)\left(y+5\right)=xy+195\)

\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)

\(\Leftrightarrow5x+3y-180=0\)

\(\Leftrightarrow5x+3y=180\)(4)

Từ (3) và (4) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh đất là 30m

Chiều rộng của mảnh đất là 10m

Gọi chiều rộng là x

Chiều dài là 60-x

Theo đề, ta có: (63-x)(x+5)=x(60-x)+265

\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)

=>58x+315=60x+265

=>-2x=-50

=>x=25

Vậy: Chiều rộng là 25m

Chiều dài là 35m

11 tháng 3 2016

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)

diện tích thửa ruộng là x.y (m2)

nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy

nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy 

từ đó ta tìm được diện tích là 308m2

NV
15 tháng 4 2022

Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1

Chiều dài ban đầu của mảnh đất: \(x+3\) (m)

Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)

Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)

Chiều rộng lúc sau: \(x-1\) (m)

Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)

Do diện tích mảnh đất ko đổi nên ta có pt:

\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+3x=x^2+4x-5\)

\(\Leftrightarrow x=5\left(m\right)\)

Vậy mảnh đất ban đầu rộng 5m, dài 8m

24 tháng 5 2023

cho mình hỏi tại sao x = 5 với ạ ?

 

20 tháng 2 2019

Này cậu :)))))

Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m ) 

( 40 < x < 80 ; 0 < y < 40 )

Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )

Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\)  ( 2 )

Từ ( 1 ) và ( 2 ) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )

Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P

NV
6 tháng 3 2023

Gọi chiều rộng mảnh đất ban đầu là x (m) với x>0

Gọi chiều dài mảnh đất ban đầu là y (m) với y>8

Do diện tích mảnh đất là 192 \(m^2\) nên: \(xy=192\)

Chiều dài mảnh đất sau khi giảm 8m: \(y-8\left(m\right)\)

Chiều rộng mảnh đất sau khi tăng 4m: \(x+4\left(m\right)\)

Diện tích mảnh đất lúc sau: \(\left(x+4\right)\left(y-8\right)\)

Do diện tích mảnh đất ko đổi nên: \(\left(x+4\right)\left(y-8\right)=192\)

Ta có hệ: \(\left\{{}\begin{matrix}xy=192\\\left(x+4\right)\left(y-8\right)=192\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=192\\xy-8x+4y-32=192\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=192\\2x-y+8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+8\right)=192\\y=2x+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+8x-192=0\\y=2x+8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=24\end{matrix}\right.\)

6 tháng 3 2023

có thể giải hệ pt chi tiết hơn được không ạ